Hyperbolic Manifolds and Their Groups

双曲流形及其群

基本信息

  • 批准号:
    1907708
  • 负责人:
  • 金额:
    $ 24.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

A three-manifold is a space where an object can move around in three distinct perpendicular directions. The universe that we inhabit is a three-manifold whose global structure we do not yet understand. Thanks to powerful theorems by Thurston, Perelman, and Mostow, we do know that the geometry of a manifold (measurements of angles, distances, and curvature) is closely tied to its large-scale structure. What is missing at this point is a quantitative understanding of how geometry and large-scale topology determine one another. This project seeks quantitative information of this nature. It contains suitable sub-projects for graduate students. More specifically, this project seeks to make progress on several fundamental questions involving the geometry of negatively curved three-manifolds and their fundamental groups. One question involves quantitative control on the change in geometry under Dehn surgery, including applications to the cosmetic surgery conjecture. A second question involves understanding Kleinian groups in which two independent elements move a point by a small distance, with applications to bounding the Margulis constant. A third question involves a quantitative understanding of the way in which three-manifold groups act on CAT(0) cube complexes, with an eye toward developing tools for the Cannon conjecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
三流形是一个物体可以在三个不同的垂直方向上移动的空间。我们所居住的宇宙是一个三维流形,其整体结构我们还不了解。由于瑟斯顿、佩雷尔曼和莫斯托的有力定理,我们知道流形的几何(角度、距离和曲率的测量)与它的大尺度结构密切相关。在这一点上缺少的是对几何和大规模拓扑如何相互确定的定量理解。本项目寻求这种性质的定量信息。它包含适合研究生的子项目。更具体地说,该项目旨在在涉及负弯曲三流形及其基本群的几何学的几个基本问题上取得进展。一个问题涉及定量控制的几何形状的变化下德恩手术,包括应用到整容手术猜想。第二个问题涉及到理解克莱因群,其中两个独立的元素移动一个点的一个小距离,与应用程序的边界马古利斯常数。第三个问题涉及对三元组作用于CAT(0)立方体复合体的方式的定量理解,着眼于开发Cannon猜想的工具。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effective drilling and filling of tame hyperbolic 3-manifolds
温和双曲 3 流形的有效钻孔和充填
  • DOI:
    10.4171/cmh/536
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Futer, David;Purcell, Jessica;Schleimer, Saul
  • 通讯作者:
    Schleimer, Saul
Infinitely many virtual geometric triangulations
无限多个虚拟几何三角剖分
  • DOI:
    10.1112/topo.12271
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Futer, David;Hamilton, Emily;Hoffman, Neil R.
  • 通讯作者:
    Hoffman, Neil R.
Effective bilipschitz bounds on drilling and filling
钻井和充填的有效 bilipschitz 界限
  • DOI:
    10.2140/gt.2022.26.1077
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Futer, David;Purcell, Jessica S;Schleimer, Saul
  • 通讯作者:
    Schleimer, Saul
Random veering triangulations are not geometric
随机转向三角测量不是几何的
  • DOI:
    10.4171/ggd/575
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Futer, David;Taylor, Samuel;Worden, William
  • 通讯作者:
    Worden, William
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Futer其他文献

Finite surgeries on three-tangle pretzel knots
三缠椒盐结的有限手术
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Futer;石川昌治;蒲谷祐一;Thomas Mattman;下川航也
  • 通讯作者:
    下川航也

David Futer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Futer', 18)}}的其他基金

Conference on Classical and Quantum 3-Manifold Topology
经典与量子三流形拓扑会议
  • 批准号:
    1841116
  • 财政年份:
    2018
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Standard Grant
Graduate Student Conference in Algebra, Geometry, and Topology
代数、几何和拓扑研究生会议
  • 批准号:
    1732161
  • 财政年份:
    2017
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Standard Grant
Graduate Student Conference in Algebra, Geometry, and Topology
代数、几何和拓扑研究生会议
  • 批准号:
    1623003
  • 财政年份:
    2016
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Standard Grant
Connections in low-dimensional topology
低维拓扑中的连接
  • 批准号:
    1408682
  • 财政年份:
    2014
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Standard Grant
Conference Proposal: Geometric Topology in Cortona
会议提案:科尔托纳的几何拓扑
  • 批准号:
    1313541
  • 财政年份:
    2013
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Standard Grant
Collaborative research: Hyperbolic geometry of knots and 3-manifolds
合作研究:结和三流形的双曲几何
  • 批准号:
    1007221
  • 财政年份:
    2010
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Standard Grant
Hyperbolic Manifolds and Their Embedded Submanifolds
双曲流形及其嵌入子流形
  • 批准号:
    2243188
  • 财政年份:
    2022
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Standard Grant
CAREER: Three-manifolds with finite volume, their geometry, representations, and complexity
职业:有限体积的三流形、它们的几何形状、表示形式和复杂性
  • 批准号:
    2142487
  • 财政年份:
    2022
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Continuing Grant
Hyperbolic Manifolds and Their Embedded Submanifolds
双曲流形及其嵌入子流形
  • 批准号:
    2203885
  • 财政年份:
    2022
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Standard Grant
Geometric Analysis of Einstein Manifolds and Their Generalizations
爱因斯坦流形的几何分析及其推广
  • 批准号:
    2212818
  • 财政年份:
    2021
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Continuing Grant
CAREER: Locally Homogeneous Geometric Manifolds and Their Moduli Spaces
职业:局部齐次几何流形及其模空间
  • 批准号:
    1945493
  • 财政年份:
    2020
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Continuing Grant
Hyperbolic Manifolds and Their Moduli Spaces
双曲流形及其模空间
  • 批准号:
    1904130
  • 财政年份:
    2019
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Continuing Grant
Research on SL_2 character varieties of hyperbolic 3-manifolds and their zeta functions
双曲3流形SL_2特征簇及其zeta函数研究
  • 批准号:
    19K03410
  • 财政年份:
    2019
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Analysis of Einstein Manifolds and Their Generalizations
爱因斯坦流形的几何分析及其推广
  • 批准号:
    1906265
  • 财政年份:
    2019
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Continuing Grant
Study on the dimension of the global sections of adjoint bundles for polarized manifolds via their invariants
极化流形伴丛整体截面维数的不变量研究
  • 批准号:
    16K05103
  • 财政年份:
    2016
  • 资助金额:
    $ 24.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了