Better Models of Eyewitness Identification Across the Lifespan
整个生命周期的更好的目击者识别模型
基本信息
- 批准号:1911758
- 负责人:
- 金额:$ 13.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award was provided as part of NSF's Social, Behavioral and Economic Sciences (SBE) Postdoctoral Research Fellowships (SPRF) program and SBE's Law and Social Sciences program. The goal of the SPRF program is to prepare promising, early career doctoral-level scientists for scientific careers in academia, industry or private sector, and government. SPRF awards involve two years of training under the sponsorship of established scientists and encourage Postdoctoral Fellows to perform independent research. NSF seeks to promote the participation of scientists from all segments of the scientific community, including those from underrepresented groups, in its research programs and activities; the postdoctoral period is considered to be an important level of professional development in attaining this goal. Each Postdoctoral Fellow must address important scientific questions that advance their respective disciplinary fields. Under the sponsorship of Dr. David Kellen at Syracuse University, this postdoctoral fellowship award supports an early career scientist investigating eyewitness identification across the lifespan, including the understudied and growing population of older adults. In particular, little research in eyewitness identification has been guided by the sophisticated modeling often employed in the basic recognition memory literature. Furthermore, the unique, and growing population of aging adults is not as well studied within this domain as younger adults, leaving an unfortunate gap in the literature. The proposed research seeks to fill these gaps by utilizing sophisticated modeling approaches to understand eyewitness identification research across the lifespan. This research aims to promote the goals of the NSF by advancing basic research in recognition and eyewitness memory and serving the public welfare through investigation of better methods and practices for law enforcement officials administering lineup identifications. The proposed research has two main tracks: Theory Building and Empirical Investigation. The Theory Building portion of the proposal applies decades of knowledge modeling basic recognition memory and confidence decisions to the complex eyewitness identification task, using modern, sophisticated approaches to modeling such as hierarchical Bayesian methods. This work will advance fundamental understanding of the processes that underpin eyewitness identification decisions, and thereby allow for the identification of factors that can enhance eyewitness memory. As the Theory Building is underway, data will be collected from younger and aging adults completing eyewitness identification tasks under a variety of methods. In the Empirical Investigation, researchers will use what they learn from these new data in Theory Building to better understand and predict how these populations differ in making life-altering eyewitness identification decisions. Specific phenomena to be investigated include how younger and older adults differ (if indeed they do) in terms of accuracy, response bias (willingness to choose anyone from a lineup), and confidence-accuracy calibration under a number of different lineup conditions. The researchers aim to fill gaps in the literature in eyewitness identification by determining: (1) whether simultaneous lineups produce better performance than showups and sequential lineups for older adults, (2) whether older adults display a strong confidence-accuracy relationship, and (3) whether older adults exhibit an own-race bias. These phenomena have been routinely studied in younger adults, but with no verification that they generalize to an older adult population. Furthermore, the researchers will apply what they learn in the Theory Building portion of the proposed research to explain the mechanisms that give rise to the findings observed in these Empirical Investigations. One final consideration will be the impact of individual differences on eyewitness memory in younger and older adults. For example, the researchers will be interested in how low- and high-functioning older adults differ in how they perform in eyewitness identification tasks. Other variables, including literacy, age, socioeconomic status, working memory capacity, and attentional control, will be examined and analyzed using cutting-edge hierarchical modeling techniques. Ultimately, the proposed research will extend the small sphere of knowledge regarding how older adults function as eyewitnesses by providing new data and, more importantly, identifying the ways to improve how older adults make eyewitness lineup identifications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是NSF的社会,行为和经济科学(SBE)博士后研究奖学金(SPRF)计划和SBE的法律和社会科学计划的一部分。SPRF计划的目标是为学术界,工业或私营部门和政府的科学事业准备有前途的早期职业博士级科学家。SPRF的奖励包括在知名科学家的赞助下进行两年的培训,并鼓励博士后研究员进行独立研究。NSF致力于促进来自科学界各部门的科学家,包括来自代表性不足的群体的科学家参与其研究计划和活动;博士后期间被认为是实现这一目标的专业发展的重要水平。每个博士后研究员必须解决推进各自学科领域的重要科学问题。在锡拉丘兹大学大卫凯伦博士的赞助下,这个博士后奖学金支持一个早期的职业科学家在整个生命周期中调查目击者身份,包括研究不足和不断增长的老年人人口。特别是,很少有研究在目击者识别已被指导的复杂建模经常采用的基本识别记忆文献。此外,独特的,不断增长的人口老龄化的成年人没有得到很好的研究,在这一领域的年轻人,留下了一个不幸的空白文献。拟议的研究旨在通过利用复杂的建模方法来填补这些空白,以了解整个生命周期的目击者身份识别研究。本研究旨在通过推进识别和目击者记忆方面的基础研究,并通过调查执法官员管理列队指认的更好方法和做法,为公益服务,促进NSF的目标。本文的研究主要有两条主线:理论构建和实证研究。该提案的理论构建部分将数十年的知识建模基本识别记忆和信心决策应用于复杂的目击者身份识别任务,使用现代,复杂的建模方法,如分层贝叶斯方法。这项工作将推进对支撑目击者识别决定的过程的基本理解,从而允许识别可以增强目击者记忆的因素。随着理论建设的进行,数据将收集从年轻人和老年人完成目击者识别任务下的各种方法。在实证调查中,研究人员将使用他们从理论构建中的这些新数据中学到的东西,以更好地理解和预测这些人群在做出改变生活的目击者识别决策时的差异。具体的现象进行调查,包括年轻人和老年人如何不同(如果他们确实这样做)的准确性,反应偏差(愿意选择任何人从阵容),以及信心准确性校准在一些不同的阵容条件。研究人员的目标是通过确定以下内容来填补目击者识别文献中的空白:(1)对于老年人来说,同时列队是否比显示和顺序列队产生更好的表现,(2)老年人是否表现出强烈的信心-准确性关系,以及(3)老年人是否表现出自己的种族偏见。这些现象已经在年轻人中进行了常规研究,但没有证实它们可以推广到老年人。此外,研究人员将应用他们在拟议研究的理论构建部分所学到的知识来解释导致这些实证研究中观察到的结果的机制。最后一个考虑因素是个体差异对年轻人和老年人目击者记忆的影响。例如,研究人员将对低功能和高功能老年人在目击者识别任务中的表现有何不同感兴趣。其他变量,包括识字率,年龄,社会经济地位,工作记忆容量和注意力控制,将使用先进的分层建模技术进行检查和分析。最终,拟议中的研究将通过提供新的数据,更重要的是,确定改善老年人如何进行目击者指认的方法,来扩展有关老年人如何作为目击者的知识领域。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan McAdoo其他文献
Ryan McAdoo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
- 批准号:
2338139 - 财政年份:2025
- 资助金额:
$ 13.8万 - 项目类别:
Continuing Grant
Developing eye models to improve eye treatments and contact/intraocular lens technologies
开发眼部模型以改善眼部治疗和隐形眼镜/人工晶状体技术
- 批准号:
2608661 - 财政年份:2025
- 资助金额:
$ 13.8万 - 项目类别:
Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 13.8万 - 项目类别:
Studentship
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
- 批准号:
2414424 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant














{{item.name}}会员




