Quantum Control of Single Polyatomic Molecules

单个多原子分子的量子控制

基本信息

  • 批准号:
    1912105
  • 负责人:
  • 金额:
    $ 47.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The molecules which surround us typically occupy millions of distinct quantum states - for example, individual molecules in the air are moving and spinning in many different directions. In order to take advantage of the quantum properties of these molecules, one needs to learn how to prepare individual molecules in a single quantum state, and to measure which state they are in. This will require absolute control over the movement and rotation of the molecule. Today, physicists can prepare atoms in single quantum states, and measure which state they are in with high fidelity. This ability underpins many of the recent advances in atomic physics. The ability to prepare and measure the state of molecules lags far behind, and no molecule containing more than two atoms has ever been prepared in a single quantum state. This project, funded by the Atomic, Molecular and Optical Physics Program of the Division of Physics, and the Chemical Structure, Dynamics and Mechanisms-A Program of the Division of Chemistry, develops the tools for this goal. An important application of this work is that it will enable the identification of individual molecules without destroying them, including identifying the chirality of these molecules. Chirality is the subtle difference between left-handed or right-handed molecules that can play a big role in how the molecule functions, for example in pharmaceuticals. This work will be done by graduate and undergraduate students at the University of California Santa Barbara (UCSB), including financially disadvantaged students enrolled in UCSB's EUREKA program. The program will allow these students to gain valuable, hands-on scientific skills while earning stipends that allow them to stay in school.The scientists leading this research have proposed a set of methods that will allow them to control a broad range of molecular ions at the single quantum state level. The centerpiece of this proposal is a new state readout method, quantum bolometry, which leverages the rich internal level structure of these molecules to provide high-fidelity quantum state readout of individual molecules. A single molecular ion will be trapped in a hybrid Paul trap/optical lattice, along with a single laser-cooled strontium ion. The molecular ion's motion will be driven via a combination of a state-dependent optical lattice and rotational transitions within the molecule which are driven directly via microwave-frequency electric fields. The method does not require sideband resolution or ground state cooling, in contrast to related quantum logic spectroscopy methods. Quantum bolometry can be applied to most reasonably small (4 - 15 atoms), nonspherical polyatomic ions. These methods will allow for non-destructive measurement of the isomer and enantiomer of individual molecules for the first time, and allow for spectroscopy with a resolution significantly greater than existing ensemble molecular spectroscopy techniques. Spectroscopy at this level would represent our most accurate determination of molecular structure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们周围的分子通常占据数百万个不同的量子态-例如,空气中的单个分子在许多不同的方向上移动和旋转。为了利用这些分子的量子特性,人们需要学习如何在单个量子状态下制备单个分子,并测量它们处于哪个状态。 这将需要对分子的运动和旋转进行绝对控制。今天,物理学家可以在单量子状态下制备原子,并以高保真度测量它们处于哪个状态。这种能力支撑了原子物理学的许多最新进展。制备和测量分子状态的能力远远落后,并且没有包含两个以上原子的分子在单个量子态中制备过。该项目由物理学系的原子、分子和光学物理方案以及化学系的化学结构、动力学和机制方案资助,为这一目标开发工具。 这项工作的一个重要应用是,它将能够在不破坏分子的情况下识别单个分子,包括识别这些分子的手性。手性是左手或右手分子之间的微妙差异,可以在分子的功能中发挥重要作用,例如在药物中。这项工作将由加州大学圣巴巴拉分校(UCSB)的研究生和本科生完成,包括参加UCSB尤里卡项目的经济困难学生。该计划将使这些学生获得宝贵的,实践的科学技能,同时赚取助学金,让他们留在学校。领导这项研究的科学家提出了一套方法,使他们能够控制在单量子态水平的分子离子的范围广泛。该提案的核心是一种新的状态读出方法,量子测辐射热法,它利用这些分子丰富的内部能级结构来提供单个分子的高保真度量子状态读出。一个单一的分子离子将被困在一个混合保罗陷阱/光学晶格,沿着一个单一的激光冷却锶离子。 分子离子的运动将通过依赖于状态的光学晶格和分子内的旋转跃迁的组合来驱动,所述旋转跃迁直接通过微波频率电场来驱动。与相关的量子逻辑光谱方法相比,该方法不需要边带分辨率或基态冷却。量子测辐射热法可以应用于最合理的小(4 - 15个原子),非球形多原子离子。这些方法将首次允许对单个分子的异构体和对映体进行非破坏性测量,并允许光谱的分辨率显著大于现有的系综分子光谱技术。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Patterson其他文献

A relevance feedback mechanism for cluster-based retrieval
  • DOI:
    10.1016/j.ipm.2006.01.009
  • 发表时间:
    2006-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Niall Rooney;David Patterson;Mykola Galushka;Vladimir Dobrynin
  • 通讯作者:
    Vladimir Dobrynin
Approach to Identification of Patients with Activated Phosphoinositide-3 Kinase Delta Syndrome (APDS)
激活的磷酸肌醇 3 激酶三角洲综合征(APDS)患者的鉴定方法
  • DOI:
    10.1016/j.jaci.2022.12.256
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    Daniel Suez;Richard Wasserman;Amy Darter;Elena Perez;Joshua Jacobs;Dareen Siri;David Patterson;Jacob Offenberger;William Lumry;Mark Scarupa
  • 通讯作者:
    Mark Scarupa
Magnitude and Trophic Fate of Black Needlerush (Juncus Roemerianus) Productivity: Does Nutrient Addition Matter?
  • DOI:
    10.1007/s13157-014-0611-5
  • 发表时间:
    2014-12-19
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Amy Hunter;Just Cebrian;Jason P. Stutes;David Patterson;Bart Christiaen;Celine Lafabrie;Josh Goff
  • 通讯作者:
    Josh Goff
Molecular genetic analysis of Down syndrome
  • DOI:
    10.1007/s00439-009-0696-8
  • 发表时间:
    2009-06-13
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    David Patterson
  • 通讯作者:
    David Patterson
Exploring DNA Markers in Relation to Disorders of Consciousness: Preliminary Data in Severe Acquired Brain Injury Patients
探索与意识障碍相关的DNA标记:严重获得性脑损伤患者的初步数据
  • DOI:
    10.1016/j.apmr.2025.01.235
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Caroline Schnakers;Jeanette Gumarang;Zhong Sheng Zheng;David Patterson;Elbert Chang;Gary Jensen;Hannah Cone;Martin Monti;Emily Rosario
  • 通讯作者:
    Emily Rosario

David Patterson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Patterson', 18)}}的其他基金

Precision Spectroscopy with Single Polyatomic Molecules
单多原子分子的精密光谱分析
  • 批准号:
    2309080
  • 财政年份:
    2023
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
IDBR TYPE A: Definitive Chemical Analysis of Microbial Volatile Mixtures and Chemical Intermediates via Microwave Spectroscopy
IDBR A 型:通过微波光谱法对微生物挥发性混合物和化学中间体进行确定性化学分析
  • 批准号:
    1832846
  • 财政年份:
    2017
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
IDBR TYPE A: Definitive Chemical Analysis of Microbial Volatile Mixtures and Chemical Intermediates via Microwave Spectroscopy
IDBR A 型:通过微波光谱法对微生物挥发性混合物和化学中间体进行确定性化学分析
  • 批准号:
    1555781
  • 财政年份:
    2016
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI: Innovation: The Global Names Architecture, an infrastructure for unifying taxonomic databases and services for managers of biological information.
合作研究:ABI:创新:全球名称架构,一个为生物信息管理者统一分类数据库和服务的基础设施。
  • 批准号:
    1062387
  • 财政年份:
    2011
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Continuing Grant
Std Research: Documenting Biodiversity: Biological Systematics in Historical and Conceptual Context
标准研究:记录生物多样性:历史和概念背景下的生物系统学
  • 批准号:
    0925827
  • 财政年份:
    2009
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
CSR - - -PDOS: Reliable Adaptive Distributed Systems (RADS)
CSR - - -PDOS:可靠的自适应分布式系统 (RADS)
  • 批准号:
    0509559
  • 财政年份:
    2005
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Continuing Grant
Collaborative Project: Digital Educational Resources in Microbial Ecology, Evolution and Diversity (DERMEED1)
合作项目:微生物生态学、进化和多样性数字教育资源 (DERMEED1)
  • 批准号:
    0333363
  • 财政年份:
    2003
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
ITR: Taming the Data Flood: Systems that Evolve, are Available, and Maintainable (SEAM)
ITR:应对数据洪流:不断发展、可用且可维护的系统 (SEAM)
  • 批准号:
    0085899
  • 财政年份:
    2000
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Continuing Grant
Characterization of Optical Waveguides Produced in Silica Glass by Electron Beam Irradiation (Research Initiation Grant)
通过电子束辐照在石英玻璃中生产的光波导的表征(研究启动资助)
  • 批准号:
    9211018
  • 财政年份:
    1992
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
U.S.-Thailand Cooperative Science Program Development
美国-泰国合作科学项目开发
  • 批准号:
    8906281
  • 财政年份:
    1989
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Quantum Control of Vanadium Nuclear Spin Registers Surrounding a Single Ytterbium Ion in a Crystal
晶体中单个镱离子周围钒核自旋寄存器的量子控制
  • 批准号:
    2210570
  • 财政年份:
    2022
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
Quantum properties of true topological semimetal of single-crystal RTeSb with precise symmetric decision and carrier control.
具有精确对称决策和载流子控制的单晶 RTeSb 真拓扑半金属的量子特性。
  • 批准号:
    22K03528
  • 财政年份:
    2022
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extremely precise control of thermal dissipation in quantum nanodevices using single-phonon manipulation by localized photon fields
利用局域光子场的单声子操纵对量子纳米器件中的热耗散进行极其精确的控制
  • 批准号:
    20K04307
  • 财政年份:
    2020
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical studies on nonperturbative methods of analyzing quantum many-body dynamics subject to single-atom-resolved measurement and control
单原子分辨测控量子多体动力学非微扰分析方法的理论研究
  • 批准号:
    19K23424
  • 财政年份:
    2019
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Control of non-classical light states by linear and non-linear interaction in hybrid systems of single semiconductor quantum dots and alkali atomic vapor
单半导体量子点和碱原子蒸气混合系统中线性和非线性相互作用对非经典光态的控制
  • 批准号:
    281308554
  • 财政年份:
    2016
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Research Grants
OP: Spatial and spectral control of quantum dot single photon emitters for scalable photonic devices
OP:用于可扩展光子器件的量子点单光子发射器的空间和光谱控制
  • 批准号:
    1609157
  • 财政年份:
    2016
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
Control of hole g-factors and spin initialization technique in single quantum dots
单量子点中空穴 g 因子的控制和自旋初始化技术
  • 批准号:
    26800162
  • 财政年份:
    2014
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
CAREER: Mechanical Control of Single Spins for Sensing and Quantum Information Processing
职业:用于传感和量子信息处理的单自旋机械控制
  • 批准号:
    1352660
  • 财政年份:
    2014
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Continuing Grant
A study of control and use of single impurity energy levels in semiconductors toward advanced functions for quantum information communication technology.
研究半导体中单一杂质能级的控制和使用,以实现量子信息通信技术的高级功能。
  • 批准号:
    22360133
  • 财政年份:
    2010
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tomography measurement and arbitrary optical control of single electron spin state in semiconductor quantum dot
半导体量子点中单电子自旋态的层析成像测量及任意光学控制
  • 批准号:
    21244044
  • 财政年份:
    2009
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了