OP: Spatial and spectral control of quantum dot single photon emitters for scalable photonic devices
OP:用于可扩展光子器件的量子点单光子发射器的空间和光谱控制
基本信息
- 批准号:1609157
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project title: Engineering materials for the scalable production of new electronic devices that use controlled emission and absorption of single photons AbstractNon-Technical: Modern photonic and electronic devices operate via the generation and transmission of many thousands of photons or electrons, respectively. Although scientists have known for many years that devices that operate with single photons or single electrons could enable revolutionary new functionality, it is extremely difficult to engineer reliable devices that operate at this level. For example, previous efforts to build a material that contains many independent but identical single photon emitters have failed because the emitters are formed at random locations and are not identical. The supported researchers will engineer a new material that overcomes this limit. First, the emitters will be forced to grow at specified locations by pre-patterning the surface on which the emitters grow. Second, each site will contain a pair of emitters whose interaction can be controlled to tune the emission to the value desired for device operation. This work will include sustained engagement with the students, parents, and teachers of an elementary school with an extremely high percentage of economically-disadvantaged students.Technical: Optoelectronic devices that operate at the quantum limit of single photons, charges, and spins have long been viewed as a promising platform for quantum device technologies. These quantum technologies promise many advances, including fundamentally secure modes of information transmission and exquisite sensors with very low detection thresholds. The ideal device would leverage wafer-scale semiconductor processing methods to create on-chip photonic devices that emit, route, manipulate, and absorb single photons. The fundamental component of such a device would have to be a single optically-active nanostructure with quantized energy states. However, efforts to create chip-scalable platforms for single-photon technologies have been hampered by the challenge of creating optically-active nanostructures with both spatial control of their position and spectral control over their emission energy. The approach to be taken in this project overcomes these challenges by leveraging two recent advances in molecular beam epitaxial growth. First, pre-patterned substrates will be used to spatially control the nucleation of "template" quantum dots (QDs) whose optical quality is unimportant. A series of these "template" QDs will be used to transfer the spatial pattern to a growth surface well-separated from the pre-patterned surface in order to obtain high optical quality from the QDs that are used for photon emission and absorption. Second, the optically-active structure will be a complex of two QDs stacked along the growth axis such that applied electric fields can be used to tune the optical absorption and emission wavelengths. Prior work on these coupled QD pairs by the PI shows that they can tune optical emission wavelengths over a range at least one order of magnitude larger than that available from single QDs. The team will embed the QD pairs within a p-i-n diode structure that enables the local application of electric fields to individual QD pairs. The individual wavelength tunability of each QD pair provides the mechanism for deterministic spectral overlap with target photonic device wavelengths.
项目名称:工程材料的可扩展生产的新的电子器件,使用控制发射和吸收的单光子AbstractNon-Technical:现代光子和电子器件的操作通过产生和传输的成千上万的光子或电子,分别。尽管科学家们多年来一直知道,使用单光子或单电子操作的设备可以实现革命性的新功能,但要设计出在这种水平上运行的可靠设备是非常困难的。例如,先前构建包含许多独立但相同的单光子发射器的材料的努力失败了,因为发射器在随机位置形成并且不相同。受支持的研究人员将设计一种新材料来克服这一限制。首先,通过对发射体生长的表面进行预图案化,将迫使发射体在指定位置处生长。第二,每个位置将包含一对发射器,其相互作用可以被控制以将发射调谐到设备操作所需的值。这项工作将包括与一所经济困难学生比例极高的小学的学生、家长和教师进行持续的接触。技术:在单光子、电荷和自旋的量子极限下工作的光电器件一直被视为量子器件技术的有前途的平台。这些量子技术有望带来许多进步,包括从根本上安全的信息传输模式和检测阈值非常低的精密传感器。理想的器件将利用晶圆级半导体加工方法来创建片上光子器件,这些光子器件可以发射、路由、操纵和吸收单个光子。这种装置的基本组成部分必须是具有量子化能态的单个光学活性纳米结构。然而,创建用于单光子技术的芯片可扩展平台的努力受到了创建具有空间控制其位置和光谱控制其发射能量的光学活性纳米结构的挑战的阻碍。在这个项目中采取的方法克服了这些挑战,利用分子束外延生长的两个最新进展。首先,预图案化的衬底将用于空间控制“模板”量子点(QD)的成核,其光学质量不重要。一系列这些“模板”QD将用于将空间图案转移到与预图案化表面良好分离的生长表面,以便从用于光子发射和吸收的QD获得高光学质量。第二,光学活性结构将是沿生长轴沿着堆叠的两个QD的复合物,使得所施加的电场可用于调谐光学吸收和发射波长。PI对这些耦合QD对的先前工作表明,它们可以在比单个QD大至少一个数量级的范围内调谐光发射波长。该团队将把量子点对嵌入p-i-n二极管结构中,使电场能够局部应用于单个量子点对。每个QD对的单独波长可调谐性提供了与目标光子器件波长的确定性光谱重叠的机制。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-density patterned InAs quantum dot arrays
低密度图案化 InAs 量子点阵列
- DOI:10.1116/1.5145205
- 发表时间:2020
- 期刊:
- 影响因子:1.4
- 作者:McCabe, Lauren N.;Wang, Yuejing;Doty, Matthew F.;Zide, Joshua M. O.
- 通讯作者:Zide, Joshua M. O.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Doty其他文献
Matthew Doty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Doty', 18)}}的其他基金
S-STEM Collaborative Planning Grant: An accelerated 3+2 pathway to BS and MS degrees in Semiconductor Manufacturing and Quantum Science disciplines
S-STEM 协作规划补助金:获得半导体制造和量子科学学科学士和硕士学位的加速 3 2 途径
- 批准号:
2322670 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RAISE-TAQS: Inverting the design paradigm: Tunable qubits in hybrid photonic materials as a scalable platform for quantum photonic devices
RAISE-TAQS:反转设计范式:混合光子材料中的可调谐量子位作为量子光子器件的可扩展平台
- 批准号:
1839056 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MRI: Development of a system for low temperature optical measurement of 3D magnon, plasmon and spin torque transfer dynamics.
MRI:开发用于 3D 磁振子、等离激元和自旋扭矩传递动力学低温光学测量的系统。
- 批准号:
1624976 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Spin Physics `by design' in quantum dot molecules
合作研究:量子点分子中“设计”的自旋物理
- 批准号:
1505574 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Developing a tunable single-spin bit for scalable spin-based optoelectronics
开发用于可扩展的基于自旋的光电子学的可调谐单自旋位
- 批准号:
1101754 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Controllable Coupling of Quantum Dots in Scalable Architectures
职业:可扩展架构中量子点的可控耦合
- 批准号:
0844747 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
高铁对欠发达省域国土空间协调(Spatial Coherence)影响研究与政策启示-以江西省为例
- 批准号:52368007
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高铁影响空间失衡(Spatial Inequality)的多尺度变异机理的理论和实证研究
- 批准号:51908258
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Separate extraction of spatial features related to blood glucose level variation from multi-wavelength spectral face images
从多波长光谱人脸图像中单独提取与血糖水平变化相关的空间特征
- 批准号:
23K17258 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CDS&E: Elucidating and Controlling the Spectral, Spatial and Temporal Responses of Plasmonic Nanostructures based on a Data-Driven Approach
CDS
- 批准号:
2202268 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Development of advanced scalable 3D spatial techniques for multi-spectral LiDAR point cloud modeling of boreal forest inventory attributes, above-ground carbon, and wildfire fuel.
开发先进的可扩展 3D 空间技术,用于北方森林库存属性、地上碳和野火燃料的多光谱 LiDAR 点云建模。
- 批准号:
570298-2022 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A development of raw image coding with generalized spectral-spatial transforms
广义谱空间变换原始图像编码的发展
- 批准号:
22K04084 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral factorization using the spatial localization of constituents in foods and biomass
利用食品和生物质成分的空间定位进行光谱分解
- 批准号:
21H02311 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Improving the Quality and Spatial Resolution of Super-spectral and Hyper-spectral Images through Sensor Fusion
通过传感器融合提高超光谱和高光谱图像的质量和空间分辨率
- 批准号:
RGPIN-2016-03662 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Laserbased infrared microscope with high spectral and spatial resolution
具有高光谱和空间分辨率的激光红外显微镜
- 批准号:
452703030 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Major Research Instrumentation
Improving the Quality and Spatial Resolution of Super-spectral and Hyper-spectral Images through Sensor Fusion
通过传感器融合提高超光谱和高光谱图像的质量和空间分辨率
- 批准号:
RGPIN-2016-03662 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Spectral Functional Principal Components on Abelian Groups with Applications to Spatial Functional Data
合作研究:阿贝尔群的谱函数主成分及其在空间函数数据中的应用
- 批准号:
1914882 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Spectral and spatial processing of wavelength information in the Drosophila visual system
果蝇视觉系统中波长信息的光谱和空间处理
- 批准号:
10219809 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别: