Improving the Accuracy, Robustness, and Computational Efficiency of the Spinning, Precessing Effective-One-Body Numerical-Relativity (SEOBNRv3/SEOBNRv4P) Codes

提高旋转、进动有效单体数值相对论 (SEOBNRv3/SEOBNRv4P) 代码的准确性、鲁棒性和计算效率

基本信息

项目摘要

This award supports research in relativity and relativistic astrophysics and it addresses the priority areas of NSF's "Windows on the Universe" Big Idea. In order to detect and characterize the gravitational-wave signals observed by Advanced LIGO, theoretical models that predict the detailed behavior of the signal as a function of the source parameters are required. These models must provide an accurate approximation to the exact solution of Einstein's equations, but must also be rapidly and robustly calculable, so that they can be used to predict the signal at hundreds of millions of parameter locations in order to characterize a single event. To that end, this project will create a new state-of-the-art in accurate and efficient waveform models, thus helping to ensure that future Advanced LIGO observations are not limited by the waveform models being used. In addition to the scientific benefits, this work will result in the training of a graduate student in the best practices of analytical relativity and gravitational-wave data analysis, thereby helping to train the next generation of gravitational-wave astronomers. Finally, this proposal will help facilitate impactful education and outreach throughout the state of West Virginia, by contributing to the existing Space Public Outreach Team (SPOT) program through the development of a new presentation on gravitational-wave astrophysics.The Precessing Spinning Effective-One-Body Numerical-Relativity (SEOBNRv3, and SEOBNRv4P currently under development) gravitational waveform model is one of only two models (along with IMRPhenomP) capable of facilitating complete parameter estimation (PE) of black-hole binary events. However, despite their great efficiency and reliability when compared to numerical relativity waveforms, the original SEOBNR codes were still far too slow to be directly useful for standard Markov-Chain Monte Carlo (MCMC)-based PE. To address this issue, the PI's team previously developed optimized versions of the SEOBNR approximants, which make it possible, using SEOBNRv3_opt, to perform PE on a candidate event at a much faster rate. In addition, the development of SEOBNRv3_opt uncovered occasional pathological behavior in the underlying SEOBNRv3 approximant. While only occurring in one out of every ~10,000 to 100,000 cases, this frequency nonetheless presents a major obstacle to PE, which requires the generation of 10^8 waveform realizations. Therefore, there is an urgent need to develop an approximant that is both significantly more efficient than SEOBNRv3_opt, and also substantially more robust. This project will create a new state-of-the-art approximant that is both more accurate and more robust than any currently in existence. This will require, first, the creation of a new approximant based on SEOBNRv3_opt, but replacing the ringdown attachment with the Backwards One-Body (BOB) merger-ringdown model developed by the PI, which produces merger-ringdown waveforms as accurate as NR results across the entire range of parameter space probed by NR. Because BOB can be extended to earlier times than the light ring, it can avoid the extreme sensitivity of SEOBNRv3 to the exact light ring location, thereby dramatically improving the robustness of the model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持相对论和相对论天体物理学的研究,并涉及美国国家科学基金会“宇宙之窗”大创意的优先领域。为了检测和表征高级 LIGO 观测到的引力波信号,需要预测信号作为源参数函数的详细行为的理论模型。这些模型必须提供爱因斯坦方程精确解的精确近似,但也必须能够快速、稳健地计算,以便它们可以用于预测数亿个参数位置的信号,从而表征单个事件。为此,该项目将创建准确高效的最新波形模型,从而有助于确保未来的高级 LIGO 观测不受所使用的波形模型的限制。除了科学效益之外,这项工作还将培训研究生分析相对论和引力波数据分析的最佳实践,从而帮助培训下一代引力波天文学家。最后,该提案将通过开发关于引力波天体物理学的新演示文稿,为现有的太空公共外展团队 (SPOT) 计划做出贡献,从而有助于促进整个西弗吉尼亚州的有影响力的教育和外展活动。进动旋转有效单体数值相对论(SEOBNRv3 和 SEOBNRv4P 目前正在开发)引力波形模型是仅有的两个模型之一(与 IRPhenomP 一起) 能够促进黑洞双星事件的完整参数估计(PE)。然而,尽管与数值相对论波形相比,它们具有很高的效率和可靠性,但原始的 SEOBNR 代码仍然太慢,无法直接用于基于标准马尔可夫链蒙特卡罗 (MCMC) 的 PE。为了解决这个问题,PI 团队之前开发了 SEOBNR 近似值的优化版本,这使得使用 SEOBNRv3_opt 以更快的速度对候选事件执行 PE 成为可能。此外,SEOBNRv3_opt 的开发揭示了底层 SEOBNRv3 近似值中偶尔出现的病理行为。虽然这种情况只发生在大约 10,000 到 100,000 例中,但该频率仍然是 PE 的主要障碍,因为 PE 需要生成 10^8 波形实现。因此,迫切需要开发一种比 SEOBNRv3_opt 更高效、更稳健的近似方法。该项目将创建一种新的、最先进的近似值,它比现有的任何近似值都更准确、更稳健。首先,这需要创建一个基于 SEOBNRv3_opt 的新近似,但用 PI 开发的向后一体 (BOB) 合并振铃模型替换振铃附件,该模型在 NR 探测的整个参数空间范围内产生与 NR 结果一样准确的合并振铃波形。由于 BOB 可以扩展到比光环更早的时间,因此可以避免 SEOBNRv3 对精确光环位置的极度敏感,从而显着提高模型的鲁棒性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sean McWilliams其他文献

Sean McWilliams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sean McWilliams', 18)}}的其他基金

CAREER: Developing Next Generation Gravitational Waveforms for Generic Black-Hole Binaries
职业:为通用黑洞双星开发下一代引力波形
  • 批准号:
    1945130
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Collaborative R&D
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
  • 批准号:
    MR/X030776/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
  • 批准号:
    MR/Z503873/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
An innovative Lawtech AI/ML platform with human oversight that manages off-payroll worker status and periodically assesses the role status to ensure accuracy.
具有人工监督功能的创新 Lawtech AI/ML 平台,可管理工资外员工的状态并定期评估角色状态以确保准确性。
  • 批准号:
    10099483
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Collaborative R&D
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods PID 7012435
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性 PID 7012435
  • 批准号:
    BB/X018563/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性
  • 批准号:
    BB/X018660/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
STTR Phase I: Microhydraulic Actuator for High-Accuracy, High-Speed Position Stages
STTR 第一阶段:用于高精度、高速位置平台的微液压执行器
  • 批准号:
    2335170
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了