Fast and Robust Algorithms for Signal Recovery from Underdetermined Measurements: Generalized Sparse Fourier Transforms, Inverse Problems, and Density Estimation

用于从欠定测量中恢复信号的快速稳健算法:广义稀疏傅里叶变换、反演问题和密度估计

基本信息

  • 批准号:
    1912706
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This project aims to develop computational methods capable of quickly generating best-possible simple solutions for several difficult computational problems of wide interest. As an example, the developed computational methods will include an algorithm for rapidly finding the best possible simple approximation of a given function of many variables from just a few function evaluations. If, e.g., the function one cares about is the probability of having an extreme rain event in Florida in two weeks as a function of current ocean temperatures, wind speeds, atmospheric pressures, etc. then such a method could help to provide a generic framework for quickly building up simple models to help predict such extreme rain events based on a reduced number of costly weather observations and climate simulations. A second example of the numerical methods to be developed as part of this project include provably accurate methods for producing correct pictures of, e.g., microscopic material features from realistic ptychographic imaging data. Such methods can help guarantee that the images one can obtain using well-planned ptychographic scans of microscopic object features (that are too small to see with the naked eye) actually look like the true object one scanned as opposed to, e.g., a distorted, fake, or even disguised version of the true object which just so happens to produce similar scan results. More generally, this project will develop fast computational methods, supported by rigorous theoretical guarantees, for several problems that involve learning extremely large and high dimensional signals from severely underdetermined measurements. The developed numerical methods will include: (i) improved and generalized sublinear-time Sparse Fourier Transform (SFT) algorithms capable of rapidly approximating any function of many variables that exhibits sparsity in any given bounded orthonormal product basis, (ii) FFT-time and provably accurate lifted phase retrieval algorithms for approximately recovering compactly supported functions (up to a global phase factor) from their spectrogram measurements as well as new and even faster SFT-based compressive phase retrieval methods which run in only sublinear-time, and (iii) the development of new, fast, low-memory, and highly-parallel distributed density estimation algorithms for large multimodal datasets and tensors. A common difficulty in developing all three sets of algorithms for the problems above stems from the shear size of the memory and/or processing power required by their standard solution approaches, which limits both their applicability as well as one's ability to obtain fully determined sets of signal measurements for their use in many settings. In all three cases, new and computationally tractable algorithms will be developed that take advantage of hidden simplifying structure in each application above (e.g., generalized Fourier sparsity in the first case, intrinsically low rank data in the second case, and intrinsic low-dimensional geometric structure in the third) thereby providing numerical approaches capable of solving several types of large problems whose numerical solution currently lies beyond our collective capabilities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发能够快速生成最佳可能的简单解决方案的几个困难的计算问题的广泛兴趣的计算方法。 作为一个例子,开发的计算方法将包括一个算法,用于快速找到一个给定的函数的许多变量的最佳可能的简单近似,从几个函数的评估。 如果,例如,人们关心的函数是作为当前海洋温度、风速、大气压力等的函数的在两周内在佛罗里达发生极端降雨事件的概率。那么这样的方法可以帮助提供用于快速建立简单模型的通用框架,以帮助基于减少数量的昂贵天气观测和气候模拟来预测这种极端降雨事件。 作为本项目的一部分,将开发的数值方法的第二个例子包括可证明准确的方法,用于生成正确的图像,例如,从现实的重叠关联成像数据的微观材料特征。 这样的方法可以帮助保证可以使用微观物体特征(其太小而不能用肉眼看到)的精心规划的重叠关联扫描获得的图像实际上看起来像扫描的真实物体,而不是例如,一个扭曲的,假的,甚至伪装的真实物体的版本,恰好产生类似的扫描结果。 更一般地说,该项目将开发快速计算方法,支持严格的理论保证,涉及学习非常大和高维信号从严重欠定测量的几个问题。开发的数值方法将包括:(i)改进的和广义的次线性时间稀疏傅立叶变换(SFT)算法,其能够快速逼近在任何给定的有界正交归一化乘积基中表现出稀疏性的许多变量的任何函数,(ii)FFT时间和可证明准确的提升相位恢复算法,用于近似恢复compensator支持的函数(直到全局相位因子)以及新的甚至更快的基于SFT的压缩相位恢复方法,其仅在次线性时间内运行,以及(iii)新的、快速的、低存储器的开发,以及用于大型多模态数据集和张量的高度并行分布式密度估计算法。开发用于上述问题的所有三组算法的共同困难源于存储器的剪切大小和/或其标准解决方案方法所需的处理能力,这限制了它们的适用性以及获得完全确定的信号测量集以供它们在许多设置中使用的能力。在所有这三种情况下,将开发新的和计算上易处理的算法,这些算法利用上述每个应用中隐藏的简化结构(例如,在第一种情况下是广义傅立叶稀疏,在第二种情况下是固有低秩数据,和第三个中的内在低维几何结构)从而提供了能够解决几类大型问题的数值方法,这些问题的数值解目前超出了我们的集体能力。该奖项反映了NSF的法定使命,并通过利用基金会的智力价值进行评估,更广泛的影响审查标准。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lower Memory Oblivious (Tensor) Subspace Embeddings with Fewer Random Bits: Modewise Methods for Least Squares
  • DOI:
    10.1137/19m1308116
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Iwen;D. Needell;E. Rebrova;A. Zare
  • 通讯作者:
    M. Iwen;D. Needell;E. Rebrova;A. Zare
On Fast Johnson-Lindenstrauss Embeddings of Compact Submanifolds of ℝ^N with Boundary
带有边界的 ^N 紧致子流形的快速 Johnson-Lindenstrauss 嵌入
  • DOI:
    10.48550/arxiv.2110.04193
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iwen, Mark A.;Schmidt, Benjamin;Tavakoli, Arman
  • 通讯作者:
    Tavakoli, Arman
Inverting Spectrogram Measurements via Aliased Wigner Distribution Deconvolution and Angular Synchronization
  • DOI:
    10.1093/imaiai/iaaa023
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Perlmutter;S. Merhi;A. Viswanathan;M. Iwen
  • 通讯作者:
    Michael Perlmutter;S. Merhi;A. Viswanathan;M. Iwen
Toward fast and provably accurate near-field ptychographic phase retrieval
迈向快速且可证明准确的近场叠层相位检索
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iwen, Mark;Perlmutter, Michael;Roach, Mark Philip
  • 通讯作者:
    Roach, Mark Philip
Phase Retrieval for $L^2([-\pi,\pi])$ via the Provably Accurate and Noise Robust Numerical Inversion of Spectrogram Measurements
通过可证明准确且抗噪的频谱图测量数值反演来检索 $L^2([-pi,pi])$
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Iwen;Michael Perlmutter;N. Sissouno;A. Viswanathan
  • 通讯作者:
    A. Viswanathan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Iwen其他文献

Mark Iwen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Iwen', 18)}}的其他基金

Collaborative Research: Fast, Low-Memory Embeddings for Tensor Data with Applications
协作研究:使用应用程序快速、低内存嵌入张量数据
  • 批准号:
    2106472
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Better Fast Algorithms for Large and High-Dimensional Datasets: Sparse Fourier Transforms and Fast Density Estimators
适用于大型和高维数据集的更好快速算法:稀疏傅立叶变换和快速密度估计器
  • 批准号:
    1416752
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
  • 批准号:
    2340586
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Robust Derivative-Free Algorithms for Complex Optimisation Problems
用于复杂优化问题的鲁棒无导数算法
  • 批准号:
    DE240100006
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
  • 批准号:
    2239787
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks
ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法
  • 批准号:
    2220271
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Robust Algorithms for Corrupted Data
职业:针对损坏数据的稳健算法
  • 批准号:
    2238821
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Title: Moving medically certifiable AI algorithms from the Cloud and onto the Medi-OS Operating System of Medical Devices to automate, make robust and increase uptake of AI in healthcare: Use-case will be community-based spirometry.
标题:将医学认证的人工智能算法从云端转移到医疗设备的 Medi-OS 操作系统上,以实现自动化、稳健并增加人工智能在医疗保健领域的采用:用例将是基于社区的肺活量测定。
  • 批准号:
    10064449
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative R&D
Robust and scalable algorithms for learning hidden structures in sparse network data with the aid of side information
借助辅助信息学习稀疏网络数据中隐藏结构的鲁棒且可扩展的算法
  • 批准号:
    2311024
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RII Track-4 NSF: Robust, Predictive, and Learning Guidance Algorithms for On-Orbit Servicing and Assembly Using Multiple Space Systems
RII Track-4 NSF:使用多个空间系统进行在轨维修和组装的稳健、预测和学习制导算法
  • 批准号:
    2229756
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了