Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids

模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析

基本信息

  • 批准号:
    1912854
  • 负责人:
  • 金额:
    $ 19.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Complex fluids are mixtures that have a coexistence between two phases. Some examples include shaving cream, blood, and the liquid crystals used in displays (LCD displays) like the one you are probably using right now to read this abstract. On a microscopic scale, the molecules of complex fluids have a special structure, which at a macroscopic scale affects the mechanical response to stress and strain. For instance, the molecules of liquid crystals react to electric fields on a microscopic scale, which on a macroscopic scale changes the polarization of the light passing through the material. Monitors take advantage of this property to allow a certain amount of red, green, or blue light through each pixel. We have barely scratched the surface of what is possible to achieve with complex fluids. Medical researchers hope to exploit the microscopic properties of ferrofluids for magnetic drug targeting, to control with precision the parts of the human body the drug is able to interact with. Materials engineers hope to use complex fluids to assemble nano-structures such as the silicon circuits in CPUs. Mathematical models and computer simulations can be used to describe the dynamics of these fluids. The goal of this research project is to design and analyze new computational algorithms that simulate the behavior of liquid crystals and ferrofluids. The algorithms will be used in simulations which may complement and ultimately replace expensive physical experiments. This research activity may also contribute to our general understanding of pattern formation in complex materials.Mathematical models for ferrofluids and liquid crystals consist of systems of partial differential equations. Due to the inherent fine scale structure of the fluids under consideration, these partial differential equations are highly nonlinear and coupled. Preserving discrete versions of energy balances, length and other constraints of the solutions of these nonlinear partial differential equations is crucial for obtaining fast and stable numerical schemes that capture realistic scenarios of their dynamics. The aim of this research project is to develop efficient and convergent finite volume and discontinuous Galerkin methods for the Rosensweig model of ferrohydrodynamics, multi-phase flow models of ferrofluids, and models of liquid crystal flows, that mimic the intrinsic structure of the underlying partial differential equations at the discrete level. The resulting algorithms will be implemented and used for extensive simulations to compare to physical observations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂流体是两相共存的混合物。一些例子包括剃须膏,血液和液晶显示器(LCD显示器)中使用的液晶,就像你现在阅读这篇摘要时可能使用的那样。在微观尺度上,复杂流体的分子具有特殊的结构,其在宏观尺度上影响对应力和应变的机械响应。例如,液晶的分子在微观尺度上对电场起反应,这在宏观尺度上改变了穿过材料的光的偏振。LCD利用这一特性允许一定量的红色、绿色或蓝色光通过每个像素。我们仅仅触及了复杂流体可能实现的目标的表面。医学研究人员希望利用铁磁流体的微观特性来实现磁性药物靶向,从而精确控制药物能够与人体发生相互作用的部位。材料工程师希望利用复杂的流体来组装纳米结构,如CPU中的硅电路。数学模型和计算机模拟可以用来描述这些流体的动力学。这个研究项目的目标是设计和分析新的计算算法,模拟液晶和铁磁流体的行为。这些算法将用于模拟,这可能会补充并最终取代昂贵的物理实验。这项研究活动也可能有助于我们对复杂材料中图案形成的一般理解。铁磁流体和液晶的数学模型由偏微分方程组组成。由于所考虑的流体固有的精细尺度结构,这些偏微分方程是高度非线性和耦合的。保留离散版本的能量平衡,长度和这些非线性偏微分方程的解决方案的其他限制是至关重要的,以获得快速和稳定的数值方案,捕捉现实的情况下,他们的动态。本研究项目的目的是开发高效和收敛的有限体积和间断Galerkin方法的Rosensweig模型的铁磁流体动力学,多相流模型的铁磁流体,液晶流模型,模仿内在结构的基本偏微分方程在离散水平。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sufficient Conditions for Dual Cascade Flux Laws in the Stochastic 2d Navier–Stokes Equations
随机二维纳维斯托克斯方程中双级联通量定律的充分条件
  • DOI:
    10.1007/s00205-020-01503-9
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Bedrossian, Jacob;Coti Zelati, Michele;Punshon-Smith, Sam;Weber, Franziska
  • 通讯作者:
    Weber, Franziska
On the convergence of an IEQ-based first-order semi-discrete scheme for the Beris-Edwards system
Statistical solutions of hyperbolic systems of conservation laws: Numerical approximation
守恒定律双曲系统的统计解:数值近似
Convergence analysis of a fully discrete energy-stable numerical scheme for the Q-tensor flow of liquid crystals
  • DOI:
    10.1137/20m1383550
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Varun M. Gudibanda;F. Weber;Yukun Yue
  • 通讯作者:
    Varun M. Gudibanda;F. Weber;Yukun Yue
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Franziska Weber其他文献

Bestimmung von reduziertem und oxydiertem Glutathion in Weizenmehlen und -teigen
Infringers’ willingness to pay compensation versus fines
  • DOI:
    10.1007/s10657-021-09709-2
  • 发表时间:
    2021-09-20
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Pieter T. M. Desmet;Franziska Weber
  • 通讯作者:
    Franziska Weber
‘A chain reaction’ or the necessity of collective actions for consumers in cartel cases
“连锁反应”或消费者在卡特尔案件中采取集体行动的必要性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Franziska Weber
  • 通讯作者:
    Franziska Weber
Harmonization: Consumer Protection
协调:消费者保护
  • DOI:
    10.1007/978-1-4614-7883-6_529-1
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Franziska Weber
  • 通讯作者:
    Franziska Weber
Liability for Unknown Risks: A Law and Economics Perspective
未知风险的责任:法律和经济学的视角
  • DOI:
    10.2139/ssrn.3036470
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Faure;L. Visscher;Franziska Weber
  • 通讯作者:
    Franziska Weber

Franziska Weber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Franziska Weber', 18)}}的其他基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
CAREER: Analysis and Numerics for the Dynamics of Fluids under Magnetic Forces
职业:磁力下流体动力学的分析和数值模拟
  • 批准号:
    2042454
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Analysis of Dynamical Structure in the Chaotic Region and Application to Trajectory Design and Optimization
混沌区域动力结构分析及其在轨迹设计与优化中的应用
  • 批准号:
    23KJ1692
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Local structure analysis for rational design of proton-conducting self-assembled membranes
质子传导自组装膜合理设计的局部结构分析
  • 批准号:
    22H01889
  • 财政年份:
    2022
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of membrane filtration mechanism of emulsions by multiphysics numerical analysis and optimal design of microporous structure
通过多物理场数值分析和微孔结构优化设计阐明乳液膜过滤机理
  • 批准号:
    22K04804
  • 财政年份:
    2022
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure and biophysical analysis aided design of novel toxoid vaccines for a major class of bacterial toxins.
结构和生物物理分析有助于针对主要一类细菌毒素设计新型类毒素疫苗。
  • 批准号:
    nhmrc : 2003435
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Ideas Grants
Design and analysis of a structure-preserving scheme for the Liu-Wu model with conservation laws both in bulk and on the boundary
具有整体和边界守恒定律的六吴模型结构保持方案的设计与分析
  • 批准号:
    21K20314
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Construction of Analysis and Design Theory for High Precision Gossamer Space Structure Systems and Its Experimental Verification
高精度游丝空间结构系统分析设计理论构建及实验验证
  • 批准号:
    21H04591
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Analysis of the precipitation for the structure design and solution of water flow on the ground level in the urban area at the time of the heavy rain
大雨时城区地面水流结构设计及解决降水分析
  • 批准号:
    20K04863
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Lesson design and learning support based on item-relation structure analysis of course contents
基于课程内容项目关系结构分析的课程设计和学习支持
  • 批准号:
    18K02887
  • 财政年份:
    2018
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure Analysis and Design of New Materials for Electrolyte in Fuel Cells Performed at Intermediate Temperature Range
中温燃料电池电解质新材料的结构分析与设计
  • 批准号:
    18K14014
  • 财政年份:
    2018
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了