Sub-Linear Complexity Methods for Multiscale Problems Without Scale Separation

无尺度分离多尺度问题的次线性复杂度方法

基本信息

  • 批准号:
    1912999
  • 负责人:
  • 金额:
    $ 9.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Many problems in science and engineering involve complicated interactions between a wide range of scales in space and time, which are computationally challenging to solve for all relevant scales due to a huge simulation cost. The proposed work aims to extract salient features of multiscale problems with a significantly reduced simulation cost. This research will enable fast simulation methods for large-scale computational problems, including optimal design of material properties such as conductivity, elasticity, and long-life cycle of batteries, etc. Also, seismology and acoustic scientific communities will benefit from the proposed work in investigating and studying underground and underwater physics such as object detection, localization, material classification, etc. The project also considers applications in numerical weather forecast methods that significantly improve the prediction accuracy using a large number of samples to quantify uncertainties in the weather forecast models. This project will fund one graduate student in year 2 of the project.The overarching goal of the project is novel sub-linear complexity methods that apply to non-separable multiscale problems. The sub-linear complexity provides a significantly improved efficiency that extracts essential and salient features of the problems without computationally resolving all active scales. The basis of the project is the extraction of effective behaviors through a seamless application of the standard method for separated scale problems. The proposed research offers a unique way to tackle non-separable scale problems without ad-hoc parameter tuning while maintaining a low simulation cost. The mathematical methods to be developed allow judicious applications of the homogenization theory for two-scale problems. Thus, the project has a significant potential to enhance the applicability of the standard computational methods developed for two-scale problems to a wide range of problems. Also, the application and validation in the context of the numerical weather forecast will contribute to connecting deterministic and stochastic multiscale modeling frameworks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学和工程中的许多问题涉及到空间和时间上各种尺度之间的复杂相互作用,由于巨大的模拟成本,对于所有相关尺度的计算都是具有挑战性的。该工作的目的是在显著降低仿真成本的情况下提取多尺度问题的显著特征。这项研究将使大规模计算问题的快速模拟方法成为可能,包括材料属性的优化设计,如导电性、弹性和电池的长寿命等。此外,地震学和声学科学界将受益于拟议的调查和研究地下和水下物理,如物体探测、定位、材料分类等。该项目还考虑在数值天气预报方法中的应用,通过大量样本量化天气预报模型中的不确定性来显著提高预测精度。这个项目将资助一名研究生在项目的第二年。该项目的总体目标是应用于不可分离的多尺度问题的新颖的亚线性复杂性方法。次线性复杂度显著提高了提取问题的基本和显著特征的效率,而无需通过计算来求解所有活动标度。该项目的基础是通过无缝应用分离规模问题的标准方法来提取有效行为。提出的研究提供了一种独特的方法来解决不可分尺度问题,而无需特别的参数调整,同时保持较低的模拟成本。将要开发的数学方法允许将齐化理论明智地应用于两个尺度的问题。因此,该项目有很大的潜力来提高为两个尺度问题开发的标准计算方法对广泛问题的适用性。此外,在数值天气预报方面的应用和验证将有助于连接确定性和随机多尺度建模框架。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
$l_p$ Regularization for Ensemble Kalman Inversion
集成卡尔曼反演的 $l_p$ 正则化
Parameter estimation in the stochastic superparameterization of two-layer quasigeostrophic flows
两层准地转流随机超参数化中的参数估计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yoonsang Lee其他文献

Learning the Dynamics for Unknown Hyperbolic Conservation Laws Using Deep Neural Networks
使用深度神经网络学习未知双曲守恒定律的动力学
  • DOI:
    10.1137/22m1537333
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhen Chen;Anne Gelb;Yoonsang Lee
  • 通讯作者:
    Yoonsang Lee
Conceptual dynamical models for turbulence
湍流的概念动力学模型
Motion generation using Center of Mass
使用质心生成运动
Stochastic Superparameterization and Multiscale Filtering of Turbulent Tracers
湍流示踪剂的随机超参数化和多尺度过滤
Fast and flexible multilegged locomotion using learned centroidal dynamics
使用学习的质心动力学快速灵活的多足运动
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Tae;Yoonsang Lee;M. V. D. Panne
  • 通讯作者:
    M. V. D. Panne

Yoonsang Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

CAREER: Fine-Grained Complexity and Algorithms for Structured Linear Equations and Linear Programs
职业:结构化线性方程和线性程序的细粒度复杂性和算法
  • 批准号:
    2238682
  • 财政年份:
    2023
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Continuing Grant
High dimensional deformations of linear representations and distribution and complexity of essential surfaces
线性表示的高维变形以及基本表面的分布和复杂性
  • 批准号:
    18KK0380
  • 财政年份:
    2019
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
AF: Medium: Collaborative Research: Beyond Sparsity: Refined Measures of Complexity for Linear Algebra
AF:媒介:协作研究:超越稀疏性:线性代数复杂性的精确度量
  • 批准号:
    1763481
  • 财政年份:
    2018
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Beyond Sparsity: Refined Measures of Complexity for Linear Algebra
AF:媒介:协作研究:超越稀疏性:线性代数复杂性的精确度量
  • 批准号:
    1763315
  • 财政年份:
    2018
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Continuing Grant
Evaluation of error exponents and reducing complexity on the decision feedback schemes using linear codes and LDPC codes
使用线性码和 LDPC 码评估误差指数并降低决策反馈方案的复杂性
  • 批准号:
    17K00020
  • 财政年份:
    2017
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New class of linear-complexity overhead-optimized random linear network codes
新型线性复杂度开销优化的随机线性网络代码
  • 批准号:
    451934-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Idea to Innovation
Linear Parameter-Varying Control - Complexity of Analysis, Synthesis and Implementation
线性参数变化控制 - 分析、综合和实现的复杂性
  • 批准号:
    238643601
  • 财政年份:
    2013
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Research Grants
Reduction of the complexity of linear models for combinatorial optimization problems via formulations in space of higher dimensions
通过高维空间中的公式降低组合优化问题的线性模型的复杂性
  • 批准号:
    214884184
  • 财政年份:
    2012
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Research Grants
Faster algorithms for hard problems like subset sum, syndrome decoding in linear codes and the shortest vector problem, with various applications in complexity theory and cryptography
针对子集和、线性码中的校正子解码和最短向量问题等难题的更快算法,在复杂性理论和密码学中具有多种应用
  • 批准号:
    206738461
  • 财政年份:
    2011
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Priority Programmes
Evaluation of linear probes for the quatification of coral reef complexity
珊瑚礁复杂性定量线性探针的评估
  • 批准号:
    382000-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 9.98万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了