Reduction of the complexity of linear models for combinatorial optimization problems via formulations in space of higher dimensions

通过高维空间中的公式降低组合优化问题的线性模型的复杂性

基本信息

项目摘要

One of the most successful approaches to combinatorial optimization over the last few decades has been to apply linear programming techniques to the convex hulls of sets of points suitably representing the feasible solutions. For many problems, the associated polytopes (i.e., those convex hulls) have been investigated very deeply. It turned out that in most interesting cases the number of facets of such a polytope is exponential in the size of the problem instance, requiring to take into account exponentially many constraints in the linear programming approach. Though often one can deal with these huge systems efficiently in an implicit way, it is desirable to find much smaller systems that serve the same goal and can be used explicitly, e.g. by off-the-shelf software. The concept of extended formulations aims at this by representing polytopes as affine projections of higher dimensional ones that are much simpler to describe. Indeed, for several problems this has been done successfully in the past. The goal of this project is to extend significantly the understanding of the concept of extended formulations for combinatorial optimization problems and to develop methods to construct such formulations as well as to determine lower bounds on the smallest possible sizes of such formulations. While the question for best possible linear representations seems to be important for understanding the fundamentals of the linear optimization approach to combinatorial optimization problems per se, it is also hoped that work within the project will lead to extensions of the toolbox for modeling discrete optimization problems in practice.
在过去的几十年里,最成功的组合优化方法之一是将线性规划技术应用于适当地表示可行解的点集的凸壳。对于许多问题,相关的多面体(即凸壳)已被深入研究。结果表明,在大多数有趣的情况下,这种多面体的面数与问题实例的大小呈指数关系,这要求在线性规划方法中指数地考虑许多约束条件。虽然人们通常可以以隐含的方式有效地处理这些巨大的系统,但人们希望找到更小的系统来服务于相同的目标,并且可以显式地使用,例如由现成的软件使用。扩展公式的概念旨在通过将多面体表示为高维多面体的仿射投影来实现,这些多面体的描述要简单得多。事实上,对于几个问题,过去已经成功地做到了这一点。这个项目的目标是大大扩展对组合优化问题扩展公式概念的理解,并开发构造这种公式的方法,以及确定这种公式的最小可能大小的下界。虽然最佳线性表示的问题对于理解组合优化问题的线性优化方法本身的基本原理似乎很重要,但也希望项目内的工作将导致在实践中扩展离散优化问题的建模工具箱。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subgraph polytopes and independence polytopes of count matroids
计数拟阵的子图多胞形和独立多胞形
  • DOI:
    10.1016/j.orl.2015.06.011
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michele Conforti;Volker Kaibel;Matthias Walter;Stefan Weltge
  • 通讯作者:
    Stefan Weltge
A Short Proof that the Extension Complexity of the Correlation Polytope Grows Exponentially
相关多胞形的可拓复杂度呈指数增长的简短证明
  • DOI:
    10.1007/s00454-014-9655-9
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Volker Kaibel;Stefan Weltge
  • 通讯作者:
    Stefan Weltge
Maximum semidefinite and linear extension complexity of families of polytopes
  • DOI:
    10.1007/s10107-017-1134-7
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Averkov, Gennadiy;Kaibel, Volker;Weltge, Stefan
  • 通讯作者:
    Weltge, Stefan
Simple extensions of polytopes
多面体的简单扩展
  • DOI:
    10.1007/s10107-015-0885-2
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Volker Kaibel;Matthias Walter
  • 通讯作者:
    Matthias Walter
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Volker Kaibel其他文献

Professor Dr. Volker Kaibel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Volker Kaibel', 18)}}的其他基金

Grundlegende Untersuchungen zur Reduktion von Symmetrie in ganzzahligen linearen Optimierungsmodellen mit Hilfe linearer Ungleichungen
使用线性不等式减少整数线性优化模型对称性的基本研究
  • 批准号:
    81958761
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CAREER: Fine-Grained Complexity and Algorithms for Structured Linear Equations and Linear Programs
职业:结构化线性方程和线性程序的细粒度复杂性和算法
  • 批准号:
    2238682
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Modeling a Neural Circuit for Flexible Control of Innate Behaviors
建模神经回路以灵活控制先天行为
  • 批准号:
    10352474
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Capacity-Achieving Encoding, Detection and Decoding in Generalized Multiuser Multiple-Input-Multiple-Output Wireless Communication Beyond 5G
5G 之外的通用多用户多输入多输出无线通信中的容量实现编码、检测和解码
  • 批准号:
    21K14156
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Modeling a Neural Circuit for Flexible Control of Innate Behaviors
建模神经回路以灵活控制先天行为
  • 批准号:
    10269964
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
High dimensional deformations of linear representations and distribution and complexity of essential surfaces
线性表示的高维变形以及基本表面的分布和复杂性
  • 批准号:
    18KK0380
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Sub-Linear Complexity Methods for Multiscale Problems Without Scale Separation
无尺度分离多尺度问题的次线性复杂度方法
  • 批准号:
    1912999
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Beyond Sparsity: Refined Measures of Complexity for Linear Algebra
AF:媒介:协作研究:超越稀疏性:线性代数复杂性的精确度量
  • 批准号:
    1763481
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Methods for Integrative Genomic Data Analysis
综合基因组数据分析方法
  • 批准号:
    10734227
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10456141
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Addressing Sparsity in Metabolomics Data Analysis
解决代谢组学数据分析中的稀疏性
  • 批准号:
    10252042
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了