CAREER: A Physical Understanding of Secrecy

职业:对秘密的物理理解

基本信息

  • 批准号:
    1914437
  • 负责人:
  • 金额:
    $ 6.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-16 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

From intelligence briefings to ecommerce, nearly all levels of society rely on the secure transmission of private information. When two or more parties share secret data, often there are certain actions they can perform to strengthen their information security. For example, sometimes revealing partial information to an unwanted eavesdropper can actually improve the overall security. This project seeks to develop a quantitative picture of how secrecy evolves as the trusted parties manipulate their data and publicly share part of their information with one another. A novel approach to this problem will be adopted through the use of recently developed techniques in the study of quantum entanglement and the theory of entanglement transformations. The notion of secrecy will be placed on the same fundamental level as quantum entanglement in that both will be viewed as precious physical resources that can be manipulated and used for various information processing tasks. Investigating the connection between classical secrecy and quantum entanglement will not only offer a new level of unification between quantum mechanics and classical information theory, but it will also yield a fresh perspective on how quantum and classical physics differ. Ultimately, the deeper understanding of classical secrecy developed in this project will lead to improved security analysis and new methodologies for securely transmitting information.This research program investigates fundamental questions in quantum information theory and classical cryptography. A typical quantum key distribution (QKD) protocol (like those employed by commercial QKD machines) consists of two separate phases - called Alice and Bob - who use a quantum channel to exchange quantum information between them. However, in this process an eavesdropper - named Eve - may interact with their state so that all three systems are described by the joint quantum state ρABE. Eventually the parties measure their respective systems and obtain measurement outcomes, i.e. classical data. But due to the indeterminism of quantum mechanics, this measurement data can only be described by some tripartite probability distribution PABE. The second phase of the QKD protocol is purely classical and now consists of Alice and Bob using local operations and public communication to convert the distribution PABE into secret key states, which are perfectly correlated bits shared between Alice and Bob, yet completely hidden from Eve. This process is known as public key agreement, or secret key distillation. Using secret key states, Alice and Bob will be able to transmit data secretly from Eve, regardless of her computational power. The distribution PABE is said to possess "secret correlations" since using public key agreement, it can be converted into secret key states. Classical systems that share secret correlations behave remarkably similar to quantum systems that share entanglement. In particular, both quantum entanglement and secret correlations are capable of being transformed, degraded, and enhanced through local physical processing and global classical communication. In this project, a mathematical framework will be constructed that is suitable for studying the most general physical manipulations of secret correlations, something currently lacking in the research literature. Within this framework, new analytic tools will be developed to study the crucial problem of secret key distillation and the broader question of when one type of secret correlations can be transformed into another. A particular focus will be on generating new secrecy monotones and measures that do not rely exclusively on information-theoretic quantities such as entropy and mutual information. Additionally, novel cryptographic paradigms will be introduced that are inspired by similar primitives in quantum information theory, such as random entanglement distillation and entanglement combing. An underlying goal of this project will be to unify classical secrecy and quantum entanglement as physical analogs. Under such a correspondence, known techniques and results in entanglement theory can be applied in the study of secrecy, and vice versa.
从情报简报到电子商务,几乎社会各个层面都依赖于私人信息的安全传输。当两个或更多方共享秘密数据时,他们通常可以执行某些操作来加强其信息安全。例如,有时向不想要的窃听者泄露部分信息实际上可以提高整体安全性。这个项目寻求开发一幅关于当受信任的各方操纵他们的数据并相互公开共享他们的部分信息时,保密如何演变的量化图景。通过使用最近发展起来的研究量子纠缠和纠缠变换理论的技术,将采用一种新的方法来解决这个问题。保密的概念将被置于与量子纠缠相同的基本水平上,因为两者都将被视为宝贵的物理资源,可以被操纵并用于各种信息处理任务。研究经典保密性和量子纠缠之间的联系不仅将为量子力学和经典信息论之间的统一提供一个新的水平,而且还将为量子物理和经典物理学的不同之处提供一个新的视角。最终,该项目对经典保密性的深入理解将导致改进的安全分析和安全传输信息的新方法。本研究计划研究量子信息理论和经典密码学中的基本问题。典型的量子密钥分发(QKD)协议(就像商业QKD机器使用的协议)由两个独立的阶段组成--称为Alice和Bob--他们使用量子通道在它们之间交换量子信息。然而,在这个过程中,一个名叫夏娃的窃听者可能会与他们的状态相互作用,因此所有三个系统都可以用联合量子态ABE来描述。最终,各方对各自的系统进行测量,并获得测量结果,即经典数据。但由于量子力学的不确定性,这些测量数据只能用一些三方概率分布PABE来描述。QKD协议的第二阶段是纯经典的,现在由Alice和Bob使用本地操作和公共通信来将分发PABE转换为秘密密钥状态,这些密钥状态是Alice和Bob之间共享的完全相关的比特,但对Eve完全隐藏。这个过程被称为公钥协议,或秘密密钥蒸馏。使用密钥状态,Alice和Bob将能够秘密传输来自Eve的数据,而不管她的计算能力如何。由于使用公钥协议,可以将分发PABE转换为秘密密钥状态,因此分发PABE被称为具有“秘密相关性”。共享秘密关联的经典系统与共享纠缠的量子系统的行为非常相似。特别是,量子纠缠和秘密关联都可以通过局部物理处理和全球经典通信来转换、退化和增强。在这个项目中,将构建一个适用于研究秘密关联的最一般物理操作的数学框架,这是目前研究文献中所缺乏的。在这个框架内,将开发新的分析工具来研究密钥蒸馏的关键问题,以及何时可以将一种类型的秘密关联转换为另一种类型的更广泛的问题。一个特别的重点将是产生新的保密性、单调和不完全依赖于信息理论量的措施,例如信息熵和互信息。此外,还将介绍受量子信息论中类似原语启发的新的密码学范例,如随机纠缠蒸馏和纠缠梳理。该项目的一个基本目标是将经典保密和量子纠缠统一为物理类比。在这样的对应下,纠缠理论中的已知技术和结果可以应用于保密研究,反之亦然。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Chitambar其他文献

Two local observables are sufficient to characterize maximally entangled states of N qubits
两个局部可观测量足以表征 N 个量子位的最大纠缠态
  • DOI:
    10.1103/physreva.83.022319
  • 发表时间:
    2010-11
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    闫凤利;高亭;Eric Chitambar
  • 通讯作者:
    Eric Chitambar

Eric Chitambar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Chitambar', 18)}}的其他基金

Pushing the Boundaries of Classical and Quantum Information Processing Toward Enhanced Security and Energy-Efficient Reliability
突破经典和量子信息处理的界限,增强安全性和节能可靠性
  • 批准号:
    2112890
  • 财政年份:
    2021
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Standard Grant
Quantum Resource Theories: General Structures and Fundamental Applications
量子资源理论:一般结构和基本应用
  • 批准号:
    1914440
  • 财政年份:
    2018
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Continuing Grant
Quantum Resource Theories: General Structures and Fundamental Applications
量子资源理论:一般结构和基本应用
  • 批准号:
    1820871
  • 财政年份:
    2018
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Continuing Grant
CAREER: A Physical Understanding of Secrecy
职业:对秘密的物理理解
  • 批准号:
    1352326
  • 财政年份:
    2014
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
  • 批准号:
    61300132
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Understanding the Integrated Cyber-Physical Resilience of Continuous Critical Manufacturing
职业:了解连续关键制造的集成网络物理弹性
  • 批准号:
    2338968
  • 财政年份:
    2024
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Standard Grant
GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
  • 批准号:
    2328678
  • 财政年份:
    2024
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Standard Grant
Towards an understanding of the physical relationships between quasar populations
理解类星体群之间的物理关系
  • 批准号:
    2876827
  • 财政年份:
    2023
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Studentship
Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
  • 批准号:
    23K17661
  • 财政年份:
    2023
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Ixchel: Building understanding of the physical, cultural and socio-economic drivers of risk for strengthening resilience in the Guatemalan cordillera
伊克切尔:加深对自然、文化和社会经济风险驱动因素的了解,以增强危地马拉山脉的复原力
  • 批准号:
    NE/T010479/2
  • 财政年份:
    2023
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Research Grant
Alberta Moving Beyond Breast Cancer (AMBER) Cohort Study: Understanding how Physical Activity, Sedentary Behaviour, and Health-related Fitness are Related to Breast Cancer Survival
艾伯塔省超越乳腺癌 (AMBER) 队列研究:了解体力活动、久坐行为和健康相关健身与乳腺癌生存有何关系
  • 批准号:
    478288
  • 财政年份:
    2023
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Operating Grants
Understanding associations between timing of physical activity and health outcomes in young adults
了解年轻人身体活动时间与健康结果之间的关联
  • 批准号:
    10747742
  • 财政年份:
    2023
  • 资助金额:
    $ 6.24万
  • 项目类别:
Understanding the physical processes controlling the amount of fine sediment and gravel embeddedness in streambeds
了解控制河床细粒沉积物和砾石嵌入量的物理过程
  • 批准号:
    2243003
  • 财政年份:
    2023
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Standard Grant
Cross-lagged associations between social connections and physical activity in older adults: Understanding synergies and direction of effects
老年人社会联系和身体活动之间的交叉滞后关联:了解协同作用和影响方向
  • 批准号:
    499231
  • 财政年份:
    2023
  • 资助金额:
    $ 6.24万
  • 项目类别:
    Operating Grants
Understanding pathology of sepsis-induced physical disability for future precision medicine.
了解脓毒症引起的身体残疾的病理学,以用于未来的精准医学。
  • 批准号:
    10713228
  • 财政年份:
    2023
  • 资助金额:
    $ 6.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了