Pushing the Boundaries of Classical and Quantum Information Processing Toward Enhanced Security and Energy-Efficient Reliability

突破经典和量子信息处理的界限,增强安全性和节能可靠性

基本信息

  • 批准号:
    2112890
  • 负责人:
  • 金额:
    $ 59.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This research aims to disrupt two types of boundaries that often emerge within classical and quantum information science. The first type of boundary refers to certain conceptual roadblocks that prevent a translation of results and scientific ideas between the domains of classical and quantum information theory. In this project, three topics are identified that have promise for a cross-fertilization and unified analysis across the classical-quantum divide. Specifically, the PIs bring expertise from both classical and quantum backgrounds to investigate the problems of multi-party correlation measures, cryptographic protocols, and energy-efficient error correction. The results obtained will have direct relevance to the development of technologies in the information-security and energy sectors. The second type of boundary challenged by this work refers to barriers frequently encountered by underrepresented populations entering STEM fields. This project has plans to initiate a summer internship program between the PIs at the University of Illinois Urbana-Champaign and historically black college and universities (HBCUs).On a technical level, this research will develop new measures of private correlations and quantum with clear operational meanings. Building on insights from the subject of quantum resource theories, a resource theory of secret sharing will be constructed for both classical and quantum states, and the utility of a given state for secret sharing will be quantified. Additionally, fundamental questions in the study of classical and quantum cryptography will be addressed. The existence of one-way functions is known to be the weakest assumption necessary for many cryptographic tasks in the classical setting, and the proposed research will look for the analogous minimal quantum assumption. A significant objective will be to understand the conditions in which one type of secure quantum cryptographic functionality can be used to simulate another. As a complement to the work on cryptography, this research will investigate circuit complexity and the energy limits of reliable quantum information processing. Analysis techniques from circuit complexity, information theory, thermodynamics, and fault-tolerant computing will be used to understand how resources like area and energy are constrained in a given computational process. As one application, an energy perspective on superquantum violations of the CHSH inequality will be taken for the first time. This work will also introduce the concept of quantum creativity and bring artificial intelligence into quantum computing to support human creativity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究旨在打破经典和量子信息科学中经常出现的两种边界。 第一种类型的边界是指某些概念上的障碍,这些障碍阻止了经典和量子信息理论领域之间的结果和科学思想的转换。 在这个项目中,确定了三个主题,有希望跨经典量子鸿沟的交叉施肥和统一的分析。 具体来说,PI带来了来自经典和量子背景的专业知识来研究多方相关性测量、加密协议和节能纠错等问题。 所取得的成果将直接关系到信息安全和能源部门的技术发展。 这项工作所挑战的第二种边界是指进入STEM领域的代表性不足的人群经常遇到的障碍。 该项目计划在伊利诺伊大学厄巴纳-香槟分校和历史上的黑人学院和大学(HBCU)的PI之间启动一个夏季实习计划。在技术层面上,这项研究将开发具有明确操作意义的私人相关性和量子的新措施。 基于对量子资源理论的理解,我们将为经典态和量子态构建一个秘密共享的资源理论,并将量化一个给定态在秘密共享中的效用。 此外,经典和量子密码学研究中的基本问题将得到解决。 已知单向函数的存在是经典环境中许多密码任务所需的最弱假设,而拟议的研究将寻找类似的最小量子假设。 一个重要的目标将是了解一种类型的安全量子密码功能可以用来模拟另一种的条件。 作为密码学工作的补充,本研究将研究可靠量子信息处理的电路复杂性和能量限制。 从电路复杂性,信息论,热力学和容错计算的分析技术将被用来了解资源,如面积和能源是如何在一个给定的计算过程中受到约束。 作为一个应用,将首次从能量角度研究CHSH不等式的超量子违反。 这项工作还将引入量子创造力的概念,并将人工智能引入量子计算,以支持人类的创造力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Search for Extraterrestrial Intelligence as One-Shot Hypothesis Testing
寻找外星智慧生物作为一次性假设检验
A Converse for Fault-tolerant Quantum Computation
容错量子计算的逆过程
  • DOI:
    10.22331/q-2023-08-16-1087
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    G, Uthirakalyani;Nayak, Anuj K.;Chatterjee, Avhishek
  • 通讯作者:
    Chatterjee, Avhishek
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Chitambar其他文献

Two local observables are sufficient to characterize maximally entangled states of N qubits
两个局部可观测量足以表征 N 个量子位的最大纠缠态
  • DOI:
    10.1103/physreva.83.022319
  • 发表时间:
    2010-11
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    闫凤利;高亭;Eric Chitambar
  • 通讯作者:
    Eric Chitambar

Eric Chitambar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Chitambar', 18)}}的其他基金

Quantum Resource Theories: General Structures and Fundamental Applications
量子资源理论:一般结构和基本应用
  • 批准号:
    1914440
  • 财政年份:
    2018
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Continuing Grant
CAREER: A Physical Understanding of Secrecy
职业:对秘密的物理理解
  • 批准号:
    1914437
  • 财政年份:
    2018
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Continuing Grant
Quantum Resource Theories: General Structures and Fundamental Applications
量子资源理论:一般结构和基本应用
  • 批准号:
    1820871
  • 财政年份:
    2018
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Continuing Grant
CAREER: A Physical Understanding of Secrecy
职业:对秘密的物理理解
  • 批准号:
    1352326
  • 财政年份:
    2014
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Continuing Grant

相似海外基金

Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
  • 批准号:
    DP240102658
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Discovery Projects
DISTOPIA - Distorting the Aerospace Manufacturing Boundaries: Operational Integration of Autonomy on Titanium
DISTOPIA - 扭曲航空航天制造边界:钛合金上的自主运营集成
  • 批准号:
    10086469
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Collaborative R&D
Drawing Civic Boundaries
划定公民界限
  • 批准号:
    2902522
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Studentship
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
  • 批准号:
    2403698
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
Advancing the boundaries of grain sampling: A robot for the autonomous, safe and representative sampling of grain bulks
突破谷物采样的界限:用于对散装谷物进行自主、安全和代表性采样的机器人
  • 批准号:
    10089327
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Collaborative R&D
Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
  • 批准号:
    2312994
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Implicit bivalence: Testing boundaries, causes, and consequences of coactivating positive and negative implicit evaluations
合作研究:内隐二价:测试共同激活积极和消极内隐评价的边界、原因和后果
  • 批准号:
    2234933
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
Linking data about media contents across platforms and national boundaries in Japan and France i
在日本和法国跨平台和国界链接有关媒体内容的数据
  • 批准号:
    23KF0070
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigating the role of grain boundaries in local deformation using the polycrystalline with columnar grains
使用柱状晶多晶研究晶界在局部变形中的作用
  • 批准号:
    23K19178
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了