Creep in Shale Across Space and Time

页岩中跨越时空的蠕变

基本信息

  • 批准号:
    1914780
  • 负责人:
  • 金额:
    $ 42.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Shale is a fine-grained sedimentary rock composed of softer materials such as clay and organics, as well as stiffer minerals such as quartz, feldspar, pyrite, and carbonates. It is the most common sedimentary rock on Earth, estimated to represent between 44 and 56 percent of all sedimentary rocks. Unlike crystalline rocks that tend to fracture under deformation, shales can serve as a seal because they are more pliable in the sense that they can undergo significant deformation without breaking. However, they are also known to exhibit significant time-dependent deformation behavior, or creep, that is observed across spatial and temporal scales. The tendency of shale to creep is well correlated with how the softer and stiffer components of this rock share an imposed load. In addition, the reduction in sample volume during creep suggests that this phenomenon is accommodated by compaction of the pore spaces between the solid grains. The latter process can lead to significant ground subsidence that often compromises the integrity and sustainability of civil infrastructures. Using laboratory and numerical modeling techniques, this project will investigate the multiscale creep behavior in shale across space and time. Laboratory experiments include indentation tests to probe the creep behavior at the nanometer scale, and triaxial tests on cylindrical specimens of rock to investigate creep at the millimeter scale. The combined laboratory experimentation-numerical simulation activities of the project will involve the participation of undergraduate students through summer research. A promotional video of the laboratory tests and numerical simulation results will be produced for recruiting graduate students as well as for outreach.The objective of this project is to capture the creep processes in shale at multiple scales in both space and time. Scale-bridging techniques will be developed linking creep processes at the nanometer, micrometer, and millimeter scales. Shale will be modeled as a mixture of softer matter (clay, organics) and stiffer matter (quartz, feldspar, pyrite, carbonates) whose creep behavior is described by Viscoplasticity Theory. A framework developed from a previous NSF project entitled "Creep in Shale at Submicron Scale" will be employed to quantify creep of the softer matter from nano-indentation tests and creep of the shale matrix from micro-indentation tests. Hold periods during nano- and micro-indentation will be timed to fully delineate the expected exponential decay of creep indentation. Validation of the model will be conducted from triaxial creep tests at the millimeter scale. Indentation creep tests typically last no more than a few minutes, whereas triaxial creep tests last for several hours and even days. This research will reconcile this very large discrepancy in the time scales for these two experiments. Throughout the course of testing, the microstructure of the material will be imaged using Transmission X-ray Microscopy (TXM), micro-Computed Tomography (mCT), and conventional Computed Tomography (CT) to delineate the spatial heterogeneity of shale at different scales. Creep of shale is one of the most intriguing and challenging phenomena in rock engineering because of the highly heterogeneous nature of this material. The combined experimental-numerical investigation will accommodate heterogeneity and will lead to better understanding and more realistic modeling of creep processes in shale at multiple scales.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
页岩是一种细粒沉积岩,由粘土和有机物等较软的物质以及石英、长石、黄铁矿和碳酸盐等较硬的矿物组成。 它是地球上最常见的沉积岩,估计占所有沉积岩的 44% 至 56%。 与在变形下容易破裂的结晶岩石不同,页岩可以起到密封作用,因为它们更柔韧,可以经历显着变形而不会破裂。 然而,它们也表现出显着的时间依赖性变形行为或蠕变,这是在空间和时间尺度上观察到的。 页岩的蠕变趋势与该岩石中较软和较硬的成分如何分担所施加的载荷密切相关。 此外,蠕变过程中样品体积的减少表明这种现象是通过压缩固体颗粒之间的孔隙空间来调节的。 后一个过程可能会导致严重的地面沉降,这通常会损害民用基础设施的完整性和可持续性。 该项目将利用实验室和数值模拟技术,研究页岩在空间和时间上的多尺度蠕变行为。 实验室实验包括用于探测纳米尺度蠕变行为的压痕试验,以及用于研究毫米尺度蠕变的圆柱形岩石样本三轴试验。 该项目的实验室实验与数值模拟相结合的活动将由本科生通过暑期研究参与。 我们将制作实验室测试和数值模拟结果的宣传视频,用于招收研究生和宣传。该项目的目标是在空间和时间的多个尺度上捕获页岩的蠕变过程。 将开发连接纳米、微米和毫米尺度蠕变过程的尺度桥接技术。 页岩将被建模为较软物质(粘土、有机物)和较硬物质(石英、长石、黄铁矿、碳酸盐)的混合物,其蠕变行为由粘塑性理论描述。 美国国家科学基金会之前的一个名为“亚微米级页岩蠕变”的项目开发的框架将用于量化纳米压痕测试中软质物质的蠕变和微压痕测试中页岩基质的蠕变。 纳米和微米压痕期间的保持时间将被定时,以充分描绘蠕变压痕的预期指数衰减。模型的验证将通过毫米级的三轴蠕变试验进行。 压痕蠕变试验通常持续不超过几分钟,而三轴蠕变试验则持续几个小时甚至几天。 这项研究将解决这两个实验在时间尺度上的巨大差异。 在整个测试过程中,将使用透射X射线显微镜(TXM)、微型计算机断层扫描(mCT)和传统计算机断层扫描(CT)对材料的微观结构进行成像,以描绘不同尺度的页岩的空间异质性。 由于页岩材料的高度异质性,页岩蠕变是岩石工程中最有趣和最具挑战性的现象之一。 实验与数值相结合的研究将适应异质性,并将在多个尺度上更好地理解页岩蠕变过程并进行更现实的建模。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolution of anisotropy with saturation and its implications for the elastoplastic responses of clay rocks
Solid–fluid interaction in porous materials with internal erosion
  • DOI:
    10.1007/s11440-023-01906-4
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Wei Chen;Yang Zhao;R. Borja
  • 通讯作者:
    Wei Chen;Yang Zhao;R. Borja
Impacts of saturation-dependent anisotropy on the shrinkage behavior of clay rocks
  • DOI:
    10.1007/s11440-021-01268-9
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    S. C. Ip;J. Choo;R. Borja
  • 通讯作者:
    S. C. Ip;J. Choo;R. Borja
A phase‐field approach for compaction band formation due to grain crushing
Dynamic strain localization into a compaction band via a phase-field approach
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ronaldo Borja其他文献

Ronaldo Borja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ronaldo Borja', 18)}}的其他基金

2015 Engineering Mechanics Institute (EMI) Conference: Computation for Sustainable Urban Systems; Stanford University, Palo Alto, California; June 16-19, 2015
2015年工程力学学会(EMI)会议:可持续城市系统计算;
  • 批准号:
    1462046
  • 财政年份:
    2015
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
Creep Deformation in Shale at Submicron Scale
亚微米尺度页岩的蠕变变形
  • 批准号:
    1462231
  • 财政年份:
    2015
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
International Workshop on Multiscale and Multiphysics Processes in Geomechanics; Stanford University, Palo Alto, California; June 23-25, 2010
地质力学多尺度和多物理过程国际研讨会;
  • 批准号:
    1007397
  • 财政年份:
    2010
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
NEESR-CR: Properties of Cohesionless Soil Subsequent to Liquefaction and Resedimentation
NEESR-CR:液化和再沉降后无粘性土壤的特性
  • 批准号:
    0936421
  • 财政年份:
    2009
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
Coupled Solid-Deformation/Fluid-Flow Simulation of Failure Initiation in Variably Saturated Slopes
变饱和斜坡中失效萌生的固体变形/流体流动耦合模拟
  • 批准号:
    0824440
  • 财政年份:
    2008
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental Imaging-finite Element Modeling of Strain Localization in Granular Soils
合作研究:颗粒土中应变局部化的实验成像有限元模型
  • 批准号:
    0324674
  • 财政年份:
    2003
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Continuing Grant
Static and Dynamic Instability of Liquefiable Soils
可液化土壤的静态和动态不稳定
  • 批准号:
    0201317
  • 财政年份:
    2002
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Continuing Grant
Finite Element Analysis of Strain Localizaion in ExcavationsResearch into Network Algorithms and Related Problems
基坑应变定位有限元分析网络算法及相关问题研究
  • 批准号:
    9700426
  • 财政年份:
    1997
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Continuing Grant
Modeling Lateral Flow and Liquefaction-Induced Ground Movement
模拟横向流和液化引起的地面运动
  • 批准号:
    9613906
  • 财政年份:
    1997
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Continuing Grant
A Coupled FE-BE Model for Nonlinear Soil-Structure Inter- action Analysis
非线性土-结构相互作用分析的耦合FE-BE模型
  • 批准号:
    9114869
  • 财政年份:
    1992
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant

相似海外基金

Saving a Lost Ecosystem: Restoring and exploring the exceptionally preserved fossils of the Cleveland Shale (Late Devonian)
拯救失去的生态系统:恢复和探索保存完好的克利夫兰页岩化石(晚泥盆世)
  • 批准号:
    2230809
  • 财政年份:
    2023
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
GOALI: Nanofluidic Physics of CO2 Utilization and Storage in Shale and Tight Oil Reservoirs
目标:页岩和致密油储层二氧化碳利用和储存的纳流体物理
  • 批准号:
    2246274
  • 财政年份:
    2023
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAR-Climate: Physical Controls on CO2 Release from Shale Weathering
合作研究:EAR-气候:页岩风化中二氧化碳释放的物理控制
  • 批准号:
    2141519
  • 财政年份:
    2022
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
Integrated Numerical Simulation for Shale Gas Reservoirs
页岩气藏综合数值模拟
  • 批准号:
    RGPIN-2018-04307
  • 财政年份:
    2022
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Discovery Grants Program - Individual
Impact of Shear-Induced Pore Pressures on the Ground Deformations Around Underground Excavations in Shale Rock Formations for Long-Term Nuclear Waste Storage
剪切引起的孔隙压力对长期核废料储存页岩岩层地下开挖周围地面变形的影响
  • 批准号:
    558519-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
I-Corps: High-frequency ultrasound technology for the detection of micro and nano porosity, shale softening and anisotropy of materials
I-Corps:高频超声技术,用于检测微米和纳米孔隙度、页岩软化和材料的各向异性
  • 批准号:
    2223852
  • 财政年份:
    2022
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
Burgess Shale-type deposits and the ichnology of fine-grained systems
伯吉斯页岩型矿床和细粒系统的地质学
  • 批准号:
    RGPIN-2020-04349
  • 财政年份:
    2022
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: EAR-Climate: Physical Controls on CO2 Release from Shale Weathering
合作研究:EAR-气候:页岩风化中二氧化碳释放的物理控制
  • 批准号:
    2141520
  • 财政年份:
    2022
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Standard Grant
Harnessing Wettability Control on Multiphase Flow in Porous Media: from Geologic Carbon Sequestration to Shale Gas/Oil Recovery
利用润湿性控制多孔介质中的多相流:从地质碳封存到页岩气/油回收
  • 批准号:
    RGPIN-2019-07162
  • 财政年份:
    2022
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Modeling of Phase Behavior and Flow in Shale Porous Media
页岩多孔介质中相行为和流动的分子模拟
  • 批准号:
    RGPIN-2017-05080
  • 财政年份:
    2022
  • 资助金额:
    $ 42.18万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了