Coupled Solid-Deformation/Fluid-Flow Simulation of Failure Initiation in Variably Saturated Slopes

变饱和斜坡中失效萌生的固体变形/流体流动耦合模拟

基本信息

  • 批准号:
    0824440
  • 负责人:
  • 金额:
    $ 28.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-10-01 至 2012-09-30
  • 项目状态:
    已结题

项目摘要

Landslides occur when earth material moves rapidly downhill after failing along a shear zone. Debris flows are differentiated from landslides by the pervasive, fluid-like deformation of the mobilized material. Landslides and debris flows threaten lives and property worldwide. Despite the fact that good progress has been made within the last two decades relative to understanding hydrologically-driven slope failure, important research has yet to be conducted in 3D physics-based fluid flow and hydrologically-driven slope instability in variably saturated soils. This award funds interdisciplinary research focused on a physics-based characterization of coupled hydrologic response/slope stability processes for steep hillslopes at the catchment scale. The model will couple solid deformation with fluid flow processes in variably saturated soils, as well as quantify the exchange of water between the subsurface and surface continua. This allows us to better understand the effects of surface runoff, evapotranspiration, and percolation on the spatial and temporal variations of degree of saturation, effective stress, and deformation pattern within the variably saturated slope. The coupled model will be tested with comprehensive and exhaustive data from the Coos Bay experimental catchment (CB1), as well as with the numerical results of recently conducted simulations on the same catchment using an Integrated Hydrology Model (InHM). This research will also utilize a recently developed stabilized low-order finite element approximation scheme employing equal orders of interpolation for the solid displacement and pore pressure fields. The highly instrumented CB1 slope failed as a large debris flow in November 1996, thus providing large volumes of data with which to compare the model predictions.The research team will combine expertise in geotechnical engineering, computational geomechanics, and quantitative hydrogeomorphology available at Stanford University to develop and test a physics-based model of slope failure initiation. To the knowledge of the PIs, no slope failure initiation model currently exists in the literature that addresses the effect of variable saturation in a quantitative way. We believe that the FE method has reached such an advanced stage that it can now handle not only complex geometry but also the effect of variable saturation. A further intellectual merit of this research lies in the tremendous opportunity for testing and validation of the proposed mathematical approaches with the available data set. The CB1 data set allows model testing and validation on a large-scale slope with complex topography and variable saturation. The availability of high-quality hydrological and geotechnical data for CB1 will help constrain the parameters of the problem, thus providing tremendous opportunity to gain a better understanding of the important processes controlling slope instability.The study is a timely contribution towards an improved understanding of the processes that control slope instability in a system driven by a rigorous characterization of the near-surface hydrology and soil constitutive properties. The simulation effort will effectively demonstrate the utility and/or limits of physics-based slope stability models less comprehensive than the one to be developed here for field conditions similar to CB1. The proposed research will also utilize the advances in computational fluid dynamics for application to geotechnical and geosciences problems. Both PIs are seriously committed to ensuring full involvement of undergraduate and underrepresented students in this project. This can be gleaned from their proven track record of mentoring, advising, supervising, and graduating undergraduate and underrepresented students at Stanford.
当土料在沿着剪切带破裂后迅速向下移动时,就会发生滑坡。 泥石流与滑坡的区别在于流动物质的普遍的、流体状的变形。 滑坡和泥石流威胁着全世界的生命和财产。 尽管在过去的二十年里,相对于理解水文驱动的边坡失稳,已经取得了很好的进展,重要的研究还没有进行在三维物理为基础的流体流动和水文驱动的边坡失稳在饱和土壤。该奖项资助跨学科研究,重点是在集水区规模的陡坡耦合水文响应/边坡稳定性过程的物理表征。 该模型将耦合固体变形与非饱和土壤中的流体流动过程,以及量化地下和表面连续体之间的水交换。 这使我们能够更好地了解地表径流,蒸散,渗流的饱和度,有效应力和变形模式的空间和时间变化的影响,在非饱和边坡。 耦合模型将测试全面和详尽的数据从库斯湾实验集水区(CB 1),以及最近进行的模拟在同一集水区使用综合水文模型(InHM)的数值结果。 本研究也将利用最近开发的稳定的低阶有限元近似方案,采用相等的固体位移和孔隙压力场的插值阶数。 1996年11月,高度仪表化的CB 1斜坡作为一个大的泥石流失败,从而提供了大量的数据与之比较的模型predictions.The研究小组将联合收割机在岩土工程,计算地质力学和定量水文地貌学的专业知识,在斯坦福大学开发和测试一个基于物理的模型,斜坡故障启动。 据PI所知,目前文献中没有以定量方式解决可变饱和度影响的边坡破坏启动模型。 我们相信,有限元方法已经达到了这样一个先进的阶段,它现在不仅可以处理复杂的几何形状,但也可变饱和度的影响。 这项研究的另一个智力价值在于,利用现有数据集测试和验证所提出的数学方法的巨大机会。CB 1数据集允许在具有复杂地形和可变饱和度的大规模斜坡上进行模型测试和验证。 CB 1的高质量水文和岩土工程数据的可用性将有助于限制问题的参数,因此,提供了巨大的机会,以获得更好地了解控制边坡不稳定的重要过程。这项研究是一个及时的贡献,以提高对控制边坡不稳定的过程,在一个系统驱动的严格表征的近-地表水文和土壤结构特性。 模拟工作将有效地证明基于物理的边坡稳定性模型的实用性和/或局限性,该模型不如针对类似于CB 1的现场条件开发的模型全面。 拟议的研究还将利用计算流体动力学的进展应用于岩土工程和地球科学问题。 两个PI都认真致力于确保本科生和代表性不足的学生充分参与这个项目。 这可以从他们在斯坦福大学指导、建议、监督和毕业本科生和代表性不足的学生的良好记录中收集到。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ronaldo Borja其他文献

Ronaldo Borja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ronaldo Borja', 18)}}的其他基金

Creep in Shale Across Space and Time
页岩中跨越时空的蠕变
  • 批准号:
    1914780
  • 财政年份:
    2019
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Standard Grant
2015 Engineering Mechanics Institute (EMI) Conference: Computation for Sustainable Urban Systems; Stanford University, Palo Alto, California; June 16-19, 2015
2015年工程力学学会(EMI)会议:可持续城市系统计算;
  • 批准号:
    1462046
  • 财政年份:
    2015
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Standard Grant
Creep Deformation in Shale at Submicron Scale
亚微米尺度页岩的蠕变变形
  • 批准号:
    1462231
  • 财政年份:
    2015
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Standard Grant
International Workshop on Multiscale and Multiphysics Processes in Geomechanics; Stanford University, Palo Alto, California; June 23-25, 2010
地质力学多尺度和多物理过程国际研讨会;
  • 批准号:
    1007397
  • 财政年份:
    2010
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Standard Grant
NEESR-CR: Properties of Cohesionless Soil Subsequent to Liquefaction and Resedimentation
NEESR-CR:液化和再沉降后无粘性土壤的特性
  • 批准号:
    0936421
  • 财政年份:
    2009
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental Imaging-finite Element Modeling of Strain Localization in Granular Soils
合作研究:颗粒土中应变局部化的实验成像有限元模型
  • 批准号:
    0324674
  • 财政年份:
    2003
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Continuing Grant
Static and Dynamic Instability of Liquefiable Soils
可液化土壤的静态和动态不稳定
  • 批准号:
    0201317
  • 财政年份:
    2002
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Continuing Grant
Finite Element Analysis of Strain Localizaion in ExcavationsResearch into Network Algorithms and Related Problems
基坑应变定位有限元分析网络算法及相关问题研究
  • 批准号:
    9700426
  • 财政年份:
    1997
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Continuing Grant
Modeling Lateral Flow and Liquefaction-Induced Ground Movement
模拟横向流和液化引起的地面运动
  • 批准号:
    9613906
  • 财政年份:
    1997
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Continuing Grant
A Coupled FE-BE Model for Nonlinear Soil-Structure Inter- action Analysis
非线性土-结构相互作用分析的耦合FE-BE模型
  • 批准号:
    9114869
  • 财政年份:
    1992
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Standard Grant

相似海外基金

Establishment of solid-state particle bonding technology using the interaction between ultrafast deformation and chemical reactions, and its scientific principles
利用超快形变与化学反应相互作用建立固态颗粒键合技术及其科学原理
  • 批准号:
    23H01721
  • 财政年份:
    2023
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Order-induced heterogeneities in the deformation behavior of FCC concentrated solid solutions
职业:FCC 浓固溶体变形行为中的有序诱导异质性
  • 批准号:
    2144451
  • 财政年份:
    2022
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Continuing Grant
Understanding Microstructure Evolution and Control During Hot Deformation: Application to Solid State Joining of High Strength Alloys
了解热变形过程中的微观结构演变和控制:在高强度合金固态连接中的应用
  • 批准号:
    RGPIN-2018-03889
  • 财政年份:
    2022
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding Microstructure Evolution and Control During Hot Deformation: Application to Solid State Joining of High Strength Alloys
了解热变形过程中的微观结构演变和控制:在高强度合金固态连接中的应用
  • 批准号:
    RGPIN-2018-03889
  • 财政年份:
    2021
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Discovery Grants Program - Individual
Establishment of the methods for evaluating the deformation and strength properties of solid wood and wood-based materials with various defects
实木及各种缺陷人造板变形及强度性能评价方法的建立
  • 批准号:
    20K06165
  • 财政年份:
    2020
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding Microstructure Evolution and Control During Hot Deformation: Application to Solid State Joining of High Strength Alloys
了解热变形过程中的微观结构演变和控制:在高强度合金固态连接中的应用
  • 批准号:
    RGPIN-2018-03889
  • 财政年份:
    2020
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical study on universality of critical behavior in solid plasticity with different deformation mechanisms
不同变形机制下固体塑性临界行为普适性的数值研究
  • 批准号:
    20K03783
  • 财政年份:
    2020
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding Microstructure Evolution and Control During Hot Deformation: Application to Solid State Joining of High Strength Alloys
了解热变形过程中的微观结构演变和控制:在高强度合金固态连接中的应用
  • 批准号:
    RGPIN-2018-03889
  • 财政年份:
    2019
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-physics modelling of semi-solid deformation and hot tearing in advanced high strength steels
先进高强度钢半固态变形和热撕裂的多物理场建模
  • 批准号:
    500496-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Collaborative Research and Development Grants
Compositional Dependence of Deformation Mechanisms in Concentrated FCC Solid Solutions
浓 FCC 固溶体中变形机制的成分依赖性
  • 批准号:
    1905748
  • 财政年份:
    2019
  • 资助金额:
    $ 28.53万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了