CCSS: Intrinsically-Linear Loadline-Envelope-Tracking (LET) Radio Transmitter Toward Wideband, Energy-Efficient, and Ultra-Fast Wireless Communications

CCSS:本质线性负载线包络跟踪 (LET) 无线电发射机,实现宽带、节能和超快速无线通信

基本信息

项目摘要

The wireless communications of 5G and beyond facilitate unprecedented quality of service such as ultrahigh speed and low latency. However, this evolution is inevitably accompanied by severe energy inefficiency mainly due to the degraded efficiency of radio-frequency (RF) power amplifiers (PAs) that are the most power-consuming module in wireless systems. On the other hand, the existing efficiency-enhancement technology, e.g., industry-standard envelope tracking, is expected to become ineffective when accommodating increasingly wide modulation bandwidth of signals. The overarching goal of this research is to investigate and demonstrate a new architecture of wideband, highly efficient, and intrinsically linearized PA and radio transmitter as a key enabler to next-generation energy-saving and ultra-fast wireless communications. The successful completion of the proposed research will mark a milestone of breaking the bandwidth limitation on PA efficiency and linearity, which crucially contributes to the growth of wireless and semiconductor industries. It is important to emphasize that the enhancement of PA efficiency will significantly reduce the energy consumption of entire wireless networks with improved environmental friendliness. Moreover, the proposed silicon-integration method provides an ideal solution to the high-cost, non-integrability, and limited-manufacturing-capacity issues of radio frontend development faced by industry. This is expected to be critical in expediting the dissemination of emerging technologies and in expanding the wireless connections from finite number of people to nearly infinite number of things (i.e., Internet of Everything). Furthermore, this research will provide foundational support to wireless and semiconductor industries by training next-generation young professionals and through collaborations and data sharing. Impacts of this research will be further broadened and prolonged through educational and inspiring outreach efforts.The next-generation wireless communications will feature wideband, high speed and low latency, which leads to extreme challenges for efficiency and linearity of RF PAs and transmitters. This project proposes a transformative concept called Loadline-Envelope-Tracking (LET) Transmitter Architecture. By shifting the paradigm of envelope tracking (ET) from the existing supply-modulation technique to the new loadline-modulation technique, this new architecture not only holds the promise to fundamentally break the bandwidth and linearity limitations imposed on existing PA efficiency-enhancement technologies, but it also inherits the advanced features of the industry-standard ET system. This research pursues the following key innovations: 1) The novel radio transmitter architecture based on loadline envelope tracking enabling wideband efficiency enhancement and intrinsic linearization of RF PAs, a significant technological leap forward in wireless communications. 2) An innovative RF-analog-digital co-design methodology to concurrently achieve optimized efficiency and linearity of PA, eliminating the necessity of external digital linearization that can be energy inefficient under wide modulation bandwidths. 3) The first-ever revealing of the speed/bandwidth limiting factors for loadline modulation and the corresponding circuit and system design methodology. 4) A silicon-integration method based on high-voltage Complementary Metal Oxide Semiconductor (HV-CMOS) process to integrate the entire LET transmitter frontend involving PA, tunable matching network, and high-speed loadline modulator, leading to the first-ever fully integrated, massively manufacturable, and low-cost single-chip solution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
5G及以后的无线通信促进了前所未有的服务质量,例如高速和低延迟。然而,这种演进不可避免地伴随着严重的能量低效率,这主要是由于射频(RF)功率放大器(PA)的效率降低,PA是无线系统中最耗电的模块。另一方面,现有的效率增强技术,例如,工业标准的包络跟踪在适应信号的越来越宽的调制带宽时预计将变得无效。本研究的总体目标是研究和展示一种宽带、高效和内在线性化的PA和无线电发射机的新架构,作为下一代节能和超快无线通信的关键推动因素。拟议研究的成功完成将标志着打破PA效率和线性度的带宽限制的里程碑,这对无线和半导体行业的增长至关重要。需要强调的是,PA效率的提高将显著降低整个无线网络的能耗,同时改善环境友好性。此外,所提出的硅集成方法为工业界面临的无线电前端开发的高成本、不可集成性和制造能力有限的问题提供了理想的解决方案。这在加速新兴技术的传播和将无线连接从有限数量的人扩展到几乎无限数量的事物(即,万物互联)。此外,这项研究将通过培训下一代年轻专业人员以及通过合作和数据共享为无线和半导体行业提供基础支持。下一代无线通信将具有宽带、高速和低延迟的特点,这对射频功率放大器和发射机的效率和线性度提出了极大的挑战。该项目提出了一个变革性的概念,称为负载线包络跟踪(LET)发射机架构。通过将包络跟踪(ET)的范式从现有的电源调制技术转移到新的负载线调制技术,这种新的架构不仅有望从根本上打破对现有PA效率增强技术施加的带宽和线性度限制,而且还继承了行业标准ET系统的先进功能。本研究追求以下关键创新:1)基于负载线包络跟踪的新型无线电发射机架构,实现了RF PA的宽带效率增强和固有线性化,这是无线通信领域的一次重大技术飞跃。2)一种创新的RF-模拟-数字协同设计方法,可同时实现PA的优化效率和线性度,无需外部数字线性化,因为在宽调制带宽下,外部数字线性化可能会降低能效。3)首次揭示了负载线调制的速度/带宽限制因素以及相应的电路和系统设计方法。4)一种基于高压互补金属氧化物半导体(HV-CMOS)工艺的硅集成方法,用于集成整个LET发射机前端,包括PA、可调谐匹配网络和高速负载线调制器,从而实现有史以来第一个完全集成的、可大规模制造的、低成本的单-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wideband Quasi-Balanced Doherty Power Amplifier with Reciprocal Main/Auxiliary Setting and Mismatch-Resilient Parallel/Series Reconfiguration
具有互易主/辅助设置和失配弹性并联/串联重新配置的宽带准平衡 Doherty 功率放大器
Asymmetrical Load Modulated Balanced Amplifier With Continuum of Modulation Ratio and Dual-Octave Bandwidth
1-D Reconfigurable Pseudo-Doherty Load Modulated Balanced Amplifier With Intrinsic VSWR Resilience Across Wide Bandwidth
Hybrid Load-Modulated Balanced Amplifier With High Linearity and Extended Dynamic Range
具有高线性度和扩展动态范围的混合负载调制平衡放大器
Analysis and Design of Reconfigurable Multiband Mismatch-Resilient Quasi-Balanced Doherty Power Amplifier for Massive MIMO Systems
大规模 MIMO 系统可重构多频带失配弹性准平衡 Doherty 功率放大器的分析与设计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenle Chen其他文献

A two-dimensional electronically-steerable array antenna for target detection on ground
一种用于地面目标检测的二维电子可控阵列天线
Load Modulated Balanced Amplifier with Reconfigurable Phase Control for Extended Dynamic Range
具有可重新配置相位控制的负载调制平衡放大器,可扩展动态范围
System-level characterization of bias noise effects on electrostatic RF MEMS tunable filters
偏置噪声对静电 RF MEMS 可调谐滤波器影响的系统级表征
Highly Linear and Highly Efficient Dual-Carrier Power Amplifier Based on Low-Loss RF Carrier Combiner
基于低损耗射频载波合路器的高线性、高效双载波功率放大器
Hybrid Load-Modulated Double-Balanced Amplifier (H-LMDBA) with Four-Way Load Modulation and >15-dB Power Back-off Range
具有四路负载调制和 >15dB 功率回退范围的混合负载调制双平衡放大器 (H-LMDBA)

Kenle Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenle Chen', 18)}}的其他基金

ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
CAREER: Non-Reciprocally-Coupled Load-Modulation Platform for Next-Generation High-Power Magnetic-Less Fully-Directional Radio Front Ends
职业:用于下一代高功率无磁全向无线电前端的非互易耦合负载调制平台
  • 批准号:
    2239207
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Continuing Grant
CCSS: AI-Assisted Reconfigurable Dual-Input Load-Modulation Transmitter Array for Energy- and Spectrum-Efficient Massive MIMO Communications
CCSS:人工智能辅助可重构双输入负载调制发射机阵列,用于节能和频谱高效的大规模 MIMO 通信
  • 批准号:
    2218808
  • 财政年份:
    2022
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Evolutionary Principles of Intrinsically Disordered Proteins
职业:本质无序蛋白质的进化原理
  • 批准号:
    2338129
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Continuing Grant
Comprehensive analysis of intrinsically disordered proteins important for protein homeostasis
对蛋白质稳态重要的本质无序蛋白质的综合分析
  • 批准号:
    22KJ0830
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
FTMA4 - Computational Biology to facilitate analysis and modulation of the function of intrinsically disordered regions in proteins
FTMA4 - 计算生物学,促进蛋白质本质无序区域功能的分析和调节
  • 批准号:
    BB/X01763X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Training Grant
Investigating molecular interactions of p53 regulated by post translation modifications and intrinsically disordered regions with advanced simulation
通过高级模拟研究翻译后修饰和本质无序区域调节的 p53 分子相互作用
  • 批准号:
    23H02445
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deciphering the function of intrinsically disordered protein regions in a cellular context
破译细胞环境中本质上无序的蛋白质区域的功能
  • 批准号:
    BB/V003577/2
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Research Grant
Impact of charge regulation on conformational and phase equilibria of intrinsically disordered proteins
电荷调节对本质无序蛋白质构象和相平衡的影响
  • 批准号:
    2227268
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
Intrinsically Disordered Protein Structural Dynamics from Combined Solution and Gas-Phase Approaches
结合溶液和气相方法的本质无序蛋白质结构动力学
  • 批准号:
    10714896
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
Medications for opioid use disorder differentially modulate intrinsically photosensitive retinal ganglion cell function, sleep, and circadian rhythms: implications for treatment
治疗阿片类药物使用障碍的药物差异调节本质光敏性视网膜神经节细胞功能、睡眠和昼夜节律:对治疗的影响
  • 批准号:
    10783274
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
Identifying differences in dynamics and residual structure of intrinsically disordered domains between monomer and fibers: using alpha-synuclein as a model
识别单体和纤维之间本质无序域的动力学和残余结构的差异:使用α-突触核蛋白作为模型
  • 批准号:
    10607325
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
Elucidation of transcription control mechanism by the intrinsically disordered proteins
阐明本质上无序蛋白质的转录控制机制
  • 批准号:
    23K08660
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了