CCSS: AI-Assisted Reconfigurable Dual-Input Load-Modulation Transmitter Array for Energy- and Spectrum-Efficient Massive MIMO Communications
CCSS:人工智能辅助可重构双输入负载调制发射机阵列,用于节能和频谱高效的大规模 MIMO 通信
基本信息
- 批准号:2218808
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The scarcity of spectrum, especially in the sub-6-GHz frequency range, has motivated the spectrally efficient massive multi-input multi-output (mMIMO) communications. However, the use of large and dense antenna array with multiple high-power radio frequency (RF) transmitters creates technical challenges of antenna-amplifier impedance mismatch, efficiency degradation, and sharp temperature rise. The overarching goal of this project is to shift the paradigm of transmitter operation from ‘static and model-driven’ to ‘dynamic, intelligent and data-driven’ to significantly enhance the energy and spectrum efficiencies of next-generation wireless systems. The AI-based reconfiguration framework for RF transmitter array can be applied to many other reconfigurable RF circuits and subsystems, e.g., mMIMO receivers with dynamic spatial filtering, tunable filters, antenna tuners, and RF signal processors, making truly intelligent radios feasible. Beyond wireless communications, outcomes of this research may also impact on a variety of other antenna array systems, such as active phased array radars, wireless imaging and sensing, and wireless power transfer. Moreover, the proposed learning-based method for solving such a highly dynamic and non-stationary problem can be generalized to other complex real-time systems including robotic control, intelligent transportation systems, and next-generation wireless networks. The impact of this project will be further expanded through the following integrated educational efforts: a) attracting and retaining underrepresented students through appropriate programs; b) engaging undergraduate students through appropriate programs; c) integration of research findings in graduate and undergraduate courses at University of Central Florida; d) outreach to local community. The RF power amplifier (PA) has conventionally been designed and deployed under the assumption of static/quasi-static load impedance and ambient temperature. Nevertheless, these assumptions are invalid for the multi-antenna mMIMO systems due to strong antenna and thermal couplings, leading to degraded spectral and energy efficiencies at system level. To address this fundamental challenge, this project aims to transform the cutting-edge AI/machine-learning (ML) technologies into the hardware-centric RF transmitter design. Specifically, a novel dual-input hybrid load modulated balanced amplifier (DI-HLMBA) is proposed, offering unparalleled efficiency, bandwidth, and linearity. More importantly, the highly reconfigurable nature of DI-HLMBA in both digital and analog domains enables dynamic closed-loop control to counteract antenna mismatch and temperature upsurge during mMIMO operation, which can be generalized as a reinforcement-learning (RL) process. Additionally, the problem of dynamically optimizing DI-HLMBA will be formulated with a RL framework based on nonstationary Markov Decision Processes and a meta-stability-based hardware implementation strategy with reconfigurable field programmable gate array (FPGA) technology, tightly coupled to achieve real-time low-latency optimization. Furthermore, the AI-assisted operation as well as multi-band multi-standard capability will be extended from the individual PA/transmitter to the mMIMO array through a unique design method for the wideband fractal-shaped antenna array. Overall, this research establishes a cross-disciplinary design methodology based on a holistic integration of digital backend, RF frontend, antenna array, sensing, AI algorithm, FPGA acceleration, and inter-module interfaces to form an energy- and spectrum-efficient mMIMO system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
频谱的稀缺性,特别是在低于6-GHz的频率范围内,激发了频谱高效的大规模多输入多输出(mMIMO)通信。然而,使用具有多个高功率射频(RF)发射器的大型且密集的天线阵列产生了天线放大器阻抗失配、效率降低和急剧温度上升的技术挑战。该项目的总体目标是将发射机操作模式从“静态和模型驱动”转变为“动态,智能和数据驱动”,以显著提高下一代无线系统的能源和频谱效率。用于RF发射器阵列的基于AI的重配置框架可以应用于许多其他可重配置RF电路和子系统,例如,mMIMO接收机,具有动态空间滤波、可调滤波器、天线调谐器和RF信号处理器,使真正的智能无线电成为可能。除了无线通信之外,这项研究的成果还可能影响各种其他天线阵列系统,例如有源相控阵雷达,无线成像和传感以及无线电力传输。此外,提出的基于学习的方法来解决这样一个高度动态和非平稳的问题,可以推广到其他复杂的实时系统,包括机器人控制,智能交通系统和下一代无线网络。该项目的影响将通过以下综合教育努力进一步扩大:a)通过适当的方案吸引和留住代表性不足的学生; B)通过适当的方案吸引本科生; c)在中央佛罗里达大学的研究生和本科生课程中整合研究成果; d)与当地社区的联系。RF功率放大器(PA)通常是在静态/准静态负载阻抗和环境温度的假设下设计和部署的。然而,由于强天线和热耦合,这些假设对于多天线mMIMO系统是无效的,导致系统级的频谱和能量效率降低。为了应对这一根本挑战,该项目旨在将尖端的AI/机器学习(ML)技术转化为以硬件为中心的RF发射机设计。具体而言,提出了一种新型的双输入混合负载调制平衡放大器(DI-HLMBA),提供无与伦比的效率,带宽和线性度。更重要的是,DI-HLMBA在数字和模拟域中的高度可重构性质使得动态闭环控制能够抵消mMIMO操作期间的天线失配和温度升高,这可以被概括为一个重复学习(RL)过程。此外,动态优化DI-HLMBA的问题将制定与RL框架的基础上非平稳马尔可夫决策过程和基于亚稳定性的硬件实现策略与可重构现场可编程门阵列(FPGA)技术,紧密耦合,以实现实时低延迟优化。此外,通过宽带分形天线阵列的独特设计方法,AI辅助操作以及多频带多标准能力将从单个PA/发射机扩展到mMIMO阵列。总体而言,该研究建立了基于数字后端、RF前端、天线阵列、传感、AI算法、FPGA加速和模块间接口的整体集成的跨学科设计方法,以形成节能和频谱高效的mMIMO系统。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响评审标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
1-D Reconfigurable Pseudo-Doherty Load Modulated Balanced Amplifier With Intrinsic VSWR Resilience Across Wide Bandwidth
- DOI:10.1109/tmtt.2023.3239399
- 发表时间:2023-06
- 期刊:
- 影响因子:4.3
- 作者:Jiachen Guo;Yuchen Cao;Kenle Chen
- 通讯作者:Jiachen Guo;Yuchen Cao;Kenle Chen
Reconfigurable Hybrid Asymmetrical Load Modulated Balanced Amplifier with High Linearity, Wide Bandwidth, and Load Insensitivity
具有高线性度、宽带宽和负载不敏感性的可重构混合非对称负载调制平衡放大器
- DOI:10.1109/ims37964.2023.10188115
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Guo, Jiachen;Chen, Kenle
- 通讯作者:Chen, Kenle
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenle Chen其他文献
A two-dimensional electronically-steerable array antenna for target detection on ground
一种用于地面目标检测的二维电子可控阵列天线
- DOI:
10.1109/aps.2011.5996817 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Dowon Kim;Xiang Cui;Ankith Cherala;Kenle Chen;D. Peroulis - 通讯作者:
D. Peroulis
Load Modulated Balanced Amplifier with Reconfigurable Phase Control for Extended Dynamic Range
具有可重新配置相位控制的负载调制平衡放大器,可扩展动态范围
- DOI:
10.1109/mwsym.2019.8700979 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yuchen Cao;Haifeng Lyu;Kenle Chen - 通讯作者:
Kenle Chen
System-level characterization of bias noise effects on electrostatic RF MEMS tunable filters
偏置噪声对静电 RF MEMS 可调谐滤波器影响的系统级表征
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
X. Liu;Kenle Chen;L. Katehi;W. Chappell;D. Peroulis - 通讯作者:
D. Peroulis
Highly Linear and Highly Efficient Dual-Carrier Power Amplifier Based on Low-Loss RF Carrier Combiner
基于低损耗射频载波合路器的高线性、高效双载波功率放大器
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:4.3
- 作者:
Kenle Chen;E. Naglich;Yu;D. Peroulis - 通讯作者:
D. Peroulis
Hybrid Load-Modulated Double-Balanced Amplifier (H-LMDBA) with Four-Way Load Modulation and >15-dB Power Back-off Range
具有四路负载调制和 >15dB 功率回退范围的混合负载调制双平衡放大器 (H-LMDBA)
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shadman Fuad Bin Faruquee;Jiachen Guo;Pingzhu Gong;Kenle Chen - 通讯作者:
Kenle Chen
Kenle Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenle Chen', 18)}}的其他基金
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Non-Reciprocally-Coupled Load-Modulation Platform for Next-Generation High-Power Magnetic-Less Fully-Directional Radio Front Ends
职业:用于下一代高功率无磁全向无线电前端的非互易耦合负载调制平台
- 批准号:
2239207 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CCSS: Intrinsically-Linear Loadline-Envelope-Tracking (LET) Radio Transmitter Toward Wideband, Energy-Efficient, and Ultra-Fast Wireless Communications
CCSS:本质线性负载线包络跟踪 (LET) 无线电发射机,实现宽带、节能和超快速无线通信
- 批准号:
1914875 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI的光谱-色度耦合动态调控系统技术研究及其在城乡建筑光环境优化中的应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多模态下AI技术融合在教育创新中的应用与关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于职业教育和产学研协同的低成本专用大模型AI系统研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
联邦学习驱动下成渝地区职业教育AI产教协同的跨区域数据共享机制与培养方案优化要素机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
The effect of AI-assisted summary writing on second language acquisition
人工智能辅助摘要写作对第二语言习得的影响
- 批准号:
24K04154 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AI Assisted Continuous Flow Electrochemistry for Pharmaceutical Manufacture
人工智能辅助制药制造的连续流电化学
- 批准号:
LP230100436 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Linkage Projects
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAP: AI-Assisted Supervisory Control of Wind Farm Connection to the Grid for Stability Monitoring
CAP:人工智能辅助风电场并网监控以进行稳定性监测
- 批准号:
2334256 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Redesigning the Human-AI Interaction Paradigm for Improving AI-Assisted Decision Making
职业:重新设计人机交互范式以改善人工智能辅助决策
- 批准号:
2340209 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325172 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326193 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: AI-Assisted Just-in-Time Scaffolding Framework for Exploring Modern Computer Design
合作研究:EAGER:用于探索现代计算机设计的人工智能辅助即时脚手架框架
- 批准号:
2327971 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325171 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant