Collaborative Research: Root Dynamics and Control in Heterogeneous Soft Substrates

合作研究:异质软基质中的根系动力学与控制

基本信息

  • 批准号:
    1915355
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The above-ground portion of plants has been almost exclusively studied largely due to imaging difficulties associated with soil-growing roots. Thus, little is known about the interaction of root architectures and substrates critical to plant health. The root system is amenable to integrated study of a living system across length and organizational scales, linking genomic to micro and macroscopic phenotypic traits and control behaviors. Plant root systems are vital for nutrient and water absorption, anchoring and support as well as soil conditioning. Such systems couple space and time to achieve excellence in complex spatial environments. Roots must grow from a seed into a complex network structure via cell division without central planning of optimal paths, adjusting to interactions with substrates of varying particle size, moisture, and compaction. Recently, advances in genetics and sequencing coupled with imaging in soil and gel-based soil mimics have begun to elucidate principles. However, real time interaction dynamics and control decisions for such processes are largely unknown. The terradynamic aspects of tip-growth interactions between root and soil are also largely unstudied. In this collaborative proposal two experts, Goldman in biomechanics, robophysics and soft matter physics, and Benfey in plant development, genetics and genomics, will work to discover principles of effective root exploration, penetration and anchoring. The proposed work will focus on the genetically well-characterized model system, rice, subjecting multiple cultivars to a suite of comparative and integrative experimental assays coupled with robophysical and computational models. A better understanding of root system development is an important step towards increasing crop yields in poor soils, critical in the face of rapid climate change. Interaction with Atlanta Botanical Gardens to study orchid growth will facilitate the Garden's conservation activities. Given the PIs' past success in interfacing with the public via popular press and interaction with local museums and schools, it is expected that the physics of plants (including robophysics) can be used to generate broad interest in plant science in a way that pure botany or plant genetics cannot.To discover novel interactions, dynamics and genes, root growth will be monitored across length and time scales, imaging with x-ray and gel systems (to study root tip dynamic growth behaviors) and confocal microscopy (for cell division and elongation) varying different soil properties and heterogeneities in well-controlled laboratory soil-mimics. Insight into root growth behaviors will be obtained via time-dependent stresses such as compacted or loose soil, as well as changes in nutrient availability. Questions associated with control of growth via cellular changes (e.g. root thickening) in response to changes in environment (e.g. soil compaction) will be of interest. Such perturbations will be complemented by utilizing genetic mutants to study how root dynamics change upon modification of key behaviors such as circumnutation. To more accurately model aspects of the living systems, the collaboration will develop experimentally validated computational models of tip-driven biological growth, calibrating the soft-matter interaction aspects of the simulation via mechanical tests and robot experiments.This project is being jointly supported by the Physics of Living Systems program in the Division of Physics and the Physiological and Structural Systems Cluster in the Division of Integrative Organismal Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物的地上部分几乎是专门研究的,这在很大程度上是因为与土壤生长的根有关的成像困难。因此,对植物健康至关重要的根构型和基质之间的相互作用知之甚少。根系适合对整个长度和组织尺度上的生命系统进行综合研究,将基因组与微观和宏观的表型特征和控制行为联系起来。植物根系对养分和水分的吸收、锚定和支撑以及土壤调节都是至关重要的。这样的系统将空间和时间结合在一起,以在复杂的空间环境中实现卓越。根必须通过细胞分裂从种子生长到复杂的网络结构,而不需要中央规划最佳路径,以适应与不同颗粒大小、水分和紧实度的基质的相互作用。最近,遗传学和测序技术的进步,加上土壤成像和基于凝胶的土壤模拟,已经开始阐明其原理。然而,此类过程的实时交互动力学和控制决策在很大程度上是未知的。根和土壤之间的根尖生长相互作用的土壤动力学方面也在很大程度上没有研究。在这项合作提案中,两位专家--生物力学、机器人物理学和软物质物理领域的戈德曼和植物发育、遗传学和基因组学领域的本菲--将致力于发现有效的根探索、渗透和锚定的原理。拟议的工作将集中在具有良好遗传特征的模型系统-水稻上,对多个品种进行一套结合机器人物理和计算模型的比较和综合实验分析。更好地了解根系发育是提高贫瘠土壤作物产量的重要一步,这在面对快速气候变化时至关重要。与亚特兰大植物园互动,研究兰花的生长,将有助于花园的保育活动。鉴于PI过去通过大众媒体以及与当地博物馆和学校的互动与公众互动的成功,预计植物物理学(包括机器人物理学)可以用来以纯植物学或植物遗传学无法产生的方式引起人们对植物科学的广泛兴趣。为了发现新的相互作用、动力学和基因,将跨长度和时间尺度监测根的生长,使用X射线和凝胶系统(以研究根尖动态生长行为)和共焦显微镜(用于细胞分裂和伸长)在受控良好的实验室土壤模拟中改变不同的土壤性质和异质性。通过紧实或疏松的土壤等随时间变化的应力以及养分有效性的变化,可以深入了解根的生长行为。与通过细胞变化(例如根部加厚)控制生长以响应环境变化(例如土壤压实)相关的问题将是令人感兴趣的。这种扰动将通过利用遗传突变来研究根部动力学如何在改变关键行为(如旋转)时发生变化来补充。为了更准确地模拟生命系统的各个方面,该合作将开发经过实验验证的尖端驱动生物生长的计算模型,通过机械测试和机器人实验来校准模拟的软物质交互方面。该项目由物理部的生命系统物理学项目和综合组织系统部的生理和结构系统集群共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bio-inspired geotechnical engineering: principles, current work, opportunities and challenges
  • DOI:
    10.1680/jgeot.20.p.170
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Martinez, Alejandro;Dejong, Jason;Zheng, Junxing
  • 通讯作者:
    Zheng, Junxing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Goldman其他文献

Using Constrained Optimization (CONOP) to examine Ordovician graptolite distribution and richness from the Central Andean Basin and their comparison with additional data from North America and Baltoscandia
  • DOI:
    10.1016/j.palaeo.2023.111396
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Blanca A. Toro;Nexxys C. Herrera Sánchez;Daniel Goldman
  • 通讯作者:
    Daniel Goldman
Exergy Theory of Value: Towards a Comprehensive Understanding of Economic Value Creation
价值火用理论:全面理解经济价值创造
  • DOI:
    10.2139/ssrn.4562648
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Goldman
  • 通讯作者:
    Daniel Goldman
Atrial Fibrillation and Anterior Cerebral Artery Absence Reduce Cerebral Perfusion: A De Novo Hemodynamic Model
心房颤动和大脑前动脉缺如减少脑灌注:从头血流动力学模型
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy J. Hunter;Jermiah J. Joseph;U. Anazodo;S. Kharche;C. McIntyre;Daniel Goldman
  • 通讯作者:
    Daniel Goldman
A Role for Gastric Point of Care Ultrasound in Postoperative Delayed Gastrointestinal Functioning
  • DOI:
    10.1016/j.jss.2022.02.028
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryan Lamm;Jamie Bloom;Micaela Collins;Daniel Goldman;David Beausang;Caitlyn Costanzo;Eric S. Schwenk;Benjamin Phillips
  • 通讯作者:
    Benjamin Phillips
Retinoic acid and Twist1a regulate orbital development and extraocular muscle organization in zebrafish
  • DOI:
    10.1016/j.ydbio.2009.05.224
  • 发表时间:
    2009-07-15
  • 期刊:
  • 影响因子:
  • 作者:
    Alon Kahana;Anda-Alexandra Calinescu;Fairouz Elsaeidi;Donika Demiri;Brenda Bohnsack;Daniel Goldman
  • 通讯作者:
    Daniel Goldman

Daniel Goldman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Goldman', 18)}}的其他基金

Collaborative Research: Using the Physics of Living Systems Student Research Network to Transmit Techniques and Train Talent
合作研究:利用生命系统物理学学生研究网络传播技术和培养人才
  • 批准号:
    2310741
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Mechanical Intelligence of Locomotion and Intrusion in Slender Organisms in Terradynamically Rich Terrain
地动力丰富地形中细长生物体运动和入侵的机械智能
  • 批准号:
    2310751
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Simulating Autonomous Agents and the Human-Autonomous Agent Interaction
协作研究:框架:模拟自主代理和人机交互
  • 批准号:
    2209792
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Creation of Active Granular Materials and Study of Emergent Properties
EAGER:合作研究:活性颗粒材料的创造和新特性的研究
  • 批准号:
    1933283
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Formation of a High Flux Student Research Network (HF-SRN) as a Laboratory for Enhancing Interaction in the PoLS SRN
合作研究:建立高通量学生研究网络(HF-SRN)作为增强 PoLS SRN 互动的实验室
  • 批准号:
    1806833
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Physical Aspects of Superorganism Physiology: Construction, Circulation, and Homeostasis in Fire Ant Colonies
超有机体生理学的物理方面:火蚁群的构建、循环和稳态
  • 批准号:
    1410971
  • 财政年份:
    2015
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
NRI: Collaborative Research: Exploiting Granular Mechanics to Enable Robotic Locomotion
NRI:合作研究:利用颗粒力学实现机器人运动
  • 批准号:
    1426443
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Geometric Mechanics for Locomoting Systems
合作研究:运动系统的几何力学
  • 批准号:
    1361778
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Student Research Network in the Physics of Living Systems: Georgia Tech Node
生命系统物理学学生研究网络:佐治亚理工学院节点
  • 批准号:
    1205878
  • 财政年份:
    2012
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Locomotion Systems Science Workshop in Arlington, VA
弗吉尼亚州阿灵顿运动系统科学研讨会
  • 批准号:
    1240730
  • 财政年份:
    2012
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Dynamic zonation in the plant root
合作研究:植物根部的动态分区
  • 批准号:
    2035814
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking brace root development and function in maize
合作研究:将玉米支撑根的发育和功能联系起来
  • 批准号:
    2109189
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking brace root development and function in maize
合作研究:将玉米支撑根的发育和功能联系起来
  • 批准号:
    2109190
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamic zonation in the plant root
合作研究:植物根部的动态分区
  • 批准号:
    2035891
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Mapping small molecules in the root meristem
合作研究:EAGER:绘制根分生组织中的小分子
  • 批准号:
    2028776
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Root Dynamics and Control in Heterogeneous Soft Substrates
合作研究:异质软基质中的根系动力学与控制
  • 批准号:
    1915445
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Root-to-Shoot Communication via the bps Signal
合作研究:通过 bps 信号进行根与芽的通讯
  • 批准号:
    1755361
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the chemical plasticity of fine roots in response to soil heterogeneities and developing a better parameter to forecast fine root decomposition
合作研究:阐明细根对土壤异质性的化学可塑性,并开发更好的参数来预测细根分解
  • 批准号:
    1754679
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了