Mechanical Intelligence of Locomotion and Intrusion in Slender Organisms in Terradynamically Rich Terrain

地动力丰富地形中细长生物体运动和入侵的机械智能

基本信息

  • 批准号:
    2310751
  • 负责人:
  • 金额:
    $ 63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Most organisms navigate complex, heterogeneous, and unpredictable environments to survive. While the genes and cellular networks that regulate navigation, growth, and other exploratory behaviors differ, diverse living systems face common physical challenges. This suggests the possibility that at the organismal level, common control strategies (and hence general principles of movement) exist across living systems despite dramatic differences in the underlying biological mechanisms. In contrast to insights gained into movement in hydro and aerodynamics environments, principles by which organisms interact with complex, heterogeneous “terradynamically rich” environments are less understood. In such environments, organisms respond to ever-changing and unpredictable local interactions with limited sensory information; the strength of the interactions implies that the organism and its environment are highly coupled and cannot be regarded as independent systems. The centrality of the physical dynamics and incompleteness of environmental information suggests that terradynamically rich environmental locomotion requires both closed-loop, active sensory feedback (commonly associated with neural control in animals or decentralized chemical cues in plants) and open-loop, passively controlled, and purely physical processes. These latter processes, in which body-environment interactions are tuned to produce adaptive exploratory behaviors without the aid of active feedback control, constitute a mechanical intelligence. In this award the team of investigators seek to discover where, when, and how active closed-loop control and passive, mechanically intelligent control mechanisms interact to create goal-oriented organism movement in terradynamically rich environments. To do so they will use model systems that face similar challenges within their physical environments: 1) O. sativa (rice) and A. thaliana roots which must navigate complex soil environments; 2) C. elegans nematodes which undulate in soil and dense, rotting vegetative tissue; 3) limbless robots in dense, heterogeneous terrains, such as those encountered in agricultural areas and search and rescue operations. The investigators will study the kinematics, forces and genetics responsible for effective function. More broadly, their findings can give insight into the role of mechanics and control in evolution and organismal behavior, and at the same time, allow us to develop robots which can traverse natural environments with performance comparable to living systems. The studied biological and robotic systems are also natural subjects of popular interest and the scientific insights gained will be leveraged for educational and outreach purposes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大多数生物体在复杂、异质和不可预测的环境中生存。虽然调控导航、生长和其他探索行为的基因和细胞网络各不相同,但不同的生命系统面临着共同的物理挑战。这表明,在生物体水平上,尽管潜在的生物机制存在巨大差异,但在生命系统中存在共同的控制策略(因此是运动的一般原则)。与对流体和空气动力学环境中运动的深入了解相反,生物体与复杂、异质的“丰富的地球动力学”环境相互作用的原理却鲜为人知。在这样的环境中,生物体对不断变化和不可预测的局部相互作用做出反应,而感官信息有限;相互作用的强度意味着生物体及其环境是高度耦合的,不能被视为独立的系统。物理动力学的中心地位和环境信息的不完整性表明,地球动力学丰富的环境运动既需要闭环的主动感觉反馈(通常与动物的神经控制或植物中的分散化学线索有关),也需要开环的被动控制和纯物理过程。这些后一种过程构成了一种机械智能,在这些过程中,身体与环境的相互作用被调整以产生适应性探索行为,而不需要主动反馈控制的帮助。在这个奖项中,研究团队试图发现主动闭环控制和被动机械智能控制机制在何处,何时以及如何相互作用,以在地球动力学丰富的环境中创造目标导向的生物体运动。 为此,他们将使用在物理环境中面临类似挑战的模型系统:1)O。sativa(rice)和A. thaliana根必须适应复杂的土壤环境; 2)C.在土壤和密集腐烂的植物组织中起伏的线虫; 3)在密集异质地形中的无肢机器人,例如在农业地区和搜索和救援行动中遇到的机器人。研究人员将研究运动学,力和遗传学负责有效的功能。更广泛地说,他们的发现可以深入了解机械和控制在进化和生物行为中的作用,同时,使我们能够开发出能够穿越自然环境的机器人,其性能与生命系统相当。所研究的生物和机器人系统也是大众感兴趣的自然主题,所获得的科学见解将用于教育和推广目的。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Goldman其他文献

Using Constrained Optimization (CONOP) to examine Ordovician graptolite distribution and richness from the Central Andean Basin and their comparison with additional data from North America and Baltoscandia
  • DOI:
    10.1016/j.palaeo.2023.111396
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Blanca A. Toro;Nexxys C. Herrera Sánchez;Daniel Goldman
  • 通讯作者:
    Daniel Goldman
Exergy Theory of Value: Towards a Comprehensive Understanding of Economic Value Creation
价值火用理论:全面理解经济价值创造
  • DOI:
    10.2139/ssrn.4562648
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Goldman
  • 通讯作者:
    Daniel Goldman
Atrial Fibrillation and Anterior Cerebral Artery Absence Reduce Cerebral Perfusion: A De Novo Hemodynamic Model
心房颤动和大脑前动脉缺如减少脑灌注:从头血流动力学模型
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy J. Hunter;Jermiah J. Joseph;U. Anazodo;S. Kharche;C. McIntyre;Daniel Goldman
  • 通讯作者:
    Daniel Goldman
A Role for Gastric Point of Care Ultrasound in Postoperative Delayed Gastrointestinal Functioning
  • DOI:
    10.1016/j.jss.2022.02.028
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryan Lamm;Jamie Bloom;Micaela Collins;Daniel Goldman;David Beausang;Caitlyn Costanzo;Eric S. Schwenk;Benjamin Phillips
  • 通讯作者:
    Benjamin Phillips
Retinoic acid and Twist1a regulate orbital development and extraocular muscle organization in zebrafish
  • DOI:
    10.1016/j.ydbio.2009.05.224
  • 发表时间:
    2009-07-15
  • 期刊:
  • 影响因子:
  • 作者:
    Alon Kahana;Anda-Alexandra Calinescu;Fairouz Elsaeidi;Donika Demiri;Brenda Bohnsack;Daniel Goldman
  • 通讯作者:
    Daniel Goldman

Daniel Goldman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Goldman', 18)}}的其他基金

Collaborative Research: Using the Physics of Living Systems Student Research Network to Transmit Techniques and Train Talent
合作研究:利用生命系统物理学学生研究网络传播技术和培养人才
  • 批准号:
    2310741
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Simulating Autonomous Agents and the Human-Autonomous Agent Interaction
协作研究:框架:模拟自主代理和人机交互
  • 批准号:
    2209792
  • 财政年份:
    2022
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: Root Dynamics and Control in Heterogeneous Soft Substrates
合作研究:异质软基质中的根系动力学与控制
  • 批准号:
    1915355
  • 财政年份:
    2019
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Creation of Active Granular Materials and Study of Emergent Properties
EAGER:合作研究:活性颗粒材料的创造和新特性的研究
  • 批准号:
    1933283
  • 财政年份:
    2019
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: Formation of a High Flux Student Research Network (HF-SRN) as a Laboratory for Enhancing Interaction in the PoLS SRN
合作研究:建立高通量学生研究网络(HF-SRN)作为增强 PoLS SRN 互动的实验室
  • 批准号:
    1806833
  • 财政年份:
    2018
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
Physical Aspects of Superorganism Physiology: Construction, Circulation, and Homeostasis in Fire Ant Colonies
超有机体生理学的物理方面:火蚁群的构建、循环和稳态
  • 批准号:
    1410971
  • 财政年份:
    2015
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
Collaborative Research: Geometric Mechanics for Locomoting Systems
合作研究:运动系统的几何力学
  • 批准号:
    1361778
  • 财政年份:
    2014
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Exploiting Granular Mechanics to Enable Robotic Locomotion
NRI:合作研究:利用颗粒力学实现机器人运动
  • 批准号:
    1426443
  • 财政年份:
    2014
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Student Research Network in the Physics of Living Systems: Georgia Tech Node
生命系统物理学学生研究网络:佐治亚理工学院节点
  • 批准号:
    1205878
  • 财政年份:
    2012
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
Locomotion Systems Science Workshop in Arlington, VA
弗吉尼亚州阿灵顿运动系统科学研讨会
  • 批准号:
    1240730
  • 财政年份:
    2012
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    EU-Funded
University of West London and Turing Intelligence Technology Limited KTP (23-24 R3)
西伦敦大学与图灵智能科技有限公司KTP (23-24 R3)
  • 批准号:
    10082602
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Knowledge Transfer Network
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Discovery Projects
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
  • 批准号:
    DP240100506
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Discovery Projects
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
  • 批准号:
    EP/Y028872/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Research Grant
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Fellowship
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了