EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Fair and Accurate Information Quality Assessment Algorithm

EAGER:SaTC:早期跨学科合作:公平准确的信息质量评估算法

基本信息

  • 批准号:
    1915790
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Prevalence of poor-quality information in cyberspaces poses threats to civic society. To increase information quality, multiple automated algorithms for undertaking quality assessment of online information have been proposed. However, the fairness and performance of these algorithms across political and policy opinions has been challenged, undermining trust in such systems. Through a unique early-stage interdisciplinary collaboration that brings together experts from the fields of information science, computer science, communication, political science, and journalism, this project will develop accurate and fair information quality assessment algorithms, while also gleaning deeper insight into the nature of information being utilized across the ideological spectrum. The proposed research advances the science of information and will offer insights to organizations that aim to undertake automated information quality assessment, ultimately allowing for the creation of safer and trustworthy cyberspaces. The proposed project will include: (1) the creation of a large article dataset that has been robustly labeled for both quality and political ideological alignment, (2) an audit of multiple existing information quality assessment algorithms to assess their accuracy and fairness, (3) a systematic post-hoc inductive analysis of the content mislabeled by these algorithms, and (4) modification of existing algorithms to support fairer and more accurate information quality assessment. These four phases will build upon each other, leveraging the contributions of each discipline and will provide a new interdisciplinary model for SaTC-related research. This project will provide interdisciplinary training to graduate students, mentoring them in diverse methods and laying the groundwork for long-term interdisciplinary research. This project also will help broaden participation in data science professions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络空间中普遍存在的劣质信息对公民社会构成了威胁。为了提高信息质量,已经提出了多种用于在线信息质量评估的自动化算法。然而,这些算法在政治和政策观点上的公平性和表现受到了挑战,破坏了人们对这些系统的信任。通过一个独特的早期跨学科合作,将来自信息科学、计算机科学、传播、政治科学和新闻学领域的专家聚集在一起,该项目将开发准确和公平的信息质量评估算法,同时还将更深入地了解跨意识形态范围使用的信息的性质。拟议的研究推进了信息科学,并将为旨在进行自动化信息质量评估的组织提供见解,最终允许创建更安全和值得信赖的网络空间。拟议的项目将包括:(1)创建一个被牢固标记为质量和政治意识形态一致性的大型文章数据集,(2)审计现有的多种信息质量评估算法,以评估其准确性和公正性,(3)对这些算法错误标记的内容进行系统的事后归纳分析,以及(4)修改现有算法,以支持更公平和更准确的信息质量评估。这四个阶段将相互促进,利用每个学科的贡献,并将为与SATC相关的研究提供一个新的跨学科模式。该项目将为研究生提供跨学科培训,以不同的方法指导他们,并为长期的跨学科研究奠定基础。该项目还将有助于扩大对数据科学专业人员的参与。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward Fairness in Misinformation Detection Algorithms
错误信息检测算法的公平性
Balancing Fairness and Accuracy in Sentiment Detection using Multiple Black Box Models
使用多个黑盒模型平衡情绪检测的公平性和准确性
  • DOI:
    10.1145/3422841.3423536
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Almuzaini, Abdulaziz A.;Singh, Vivek K.
  • 通讯作者:
    Singh, Vivek K.
Gendered Sounds in Household Devices: Results from an Online Search Case Study
家用设备中的性别声音:在线搜索案例研究的结果
A Fairness-Aware Fusion Framework for Multimodal Cyberbullying Detection
用于多模式网络欺凌检测的公平感知融合框架
Detecting fake news stories via multimodal analysis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vivek Singh其他文献

Extra-axial tentorial medulloblastoma: a rare presentation of a common posterior fossa tumour
轴外小脑幕髓母细胞瘤:常见后颅窝肿瘤的罕见表现
  • DOI:
    10.1136/bcr-2021-242865
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Somesh Singh;Amrin Israrahmed;Vikrant Verma;Vivek Singh
  • 通讯作者:
    Vivek Singh
Novel Histopathologic and Immunohistochemical Observations in Explanted Orbital Peri-implant Capsules
移植的眼眶种植体周围胶囊的新组织病理学和免疫组织化学观察
  • DOI:
    10.1080/02713683.2020.1801760
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2
  • 作者:
    T. Dave;Dilip Kumar Mishra;Vivek Singh;Sonali Kumar;Noopur Mitragotri;B. Rao
  • 通讯作者:
    B. Rao
Bipolar disorders: treatment options and patient satisfaction
双相情感障碍:治疗选择和患者满意度
Valproate: Clinical Pharmacological Profile
丙戊酸:临床药理学概况
  • DOI:
    10.1002/9780470975114.ch3
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    C. Bowden;Vivek Singh
  • 通讯作者:
    Vivek Singh
Leveraging Large Language Models (LLMs) to Support Collaborative Human-AI Online Risk Data Annotation
利用大型语言模型 (LLM) 支持人机协作在线风险数据注释
  • DOI:
    10.2139/ssrn.4774771
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Park;Pamela J. Wisniewski;Vivek Singh
  • 通讯作者:
    Vivek Singh

Vivek Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vivek Singh', 18)}}的其他基金

Collaborative Research: Predictive Intelligence for Pandemic Prevention, Theme 4: Social and Behavioral Obstacles and Supports
合作研究:流行病预防的预测情报,主题 4:社会和行为障碍与支持
  • 批准号:
    2119078
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
RAPID: Countering Language Biases in COVID-19 Search Auto-Completes
RAPID:应对 COVID-19 搜索自动完成中的语言偏见
  • 批准号:
    2027784
  • 财政年份:
    2020
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Student Travel Support for the 26th ACM International Conference on Multimedia 2018 (ACM MM 2018)
2018 年第 26 届 ACM 国际多媒体会议 (ACM MM 2018) 学生旅行支持
  • 批准号:
    1838427
  • 财政年份:
    2018
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
CRII: CHS: Cyberbullying Detection Using Content and Social Network Analysis
CRII:CHS:使用内容和社交网络分析进行网络欺凌检测
  • 批准号:
    1464287
  • 财政年份:
    2015
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Designing Trustworthy and Transparent Information Platforms
EAGER:SaTC:早期跨学科合作:设计值得信赖且透明的信息平台
  • 批准号:
    2128642
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: A Case- and Play-Based Learning Module for Cybersecurity and Artificial Intelligence Education for Early Teen Learners
EAGER:SaTC-EDU:针对早期青少年学习者的网络安全和人工智能教育的基于案例和游戏的学习模块
  • 批准号:
    2113803
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Instilling a Mindset of Adversarial Thinking into Computer Science Courses Early and Often
EAGER:SaTC-EDU:尽早且经常地将对抗性思维方式灌输到计算机科学课程中
  • 批准号:
    2039354
  • 财政年份:
    2020
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Designing Trustworthy and Transparent Information Platforms
EAGER:SaTC:早期跨学科合作:设计值得信赖且透明的信息平台
  • 批准号:
    1915755
  • 财政年份:
    2019
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Collaborative: Advances in Socio-Algorithmic Information Diversity
EAGER:SaTC:早期跨学科合作:协作:社会算法信息多样性的进展
  • 批准号:
    1915833
  • 财政年份:
    2019
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Improving the Bug Bounty System
EAGER:SaTC:早期跨学科合作:改进错误赏金系统
  • 批准号:
    1915815
  • 财政年份:
    2019
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Multi-regulation computation
EAGER:SaTC:早期跨学科合作:多规则计算
  • 批准号:
    1915763
  • 财政年份:
    2019
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Privacy-Preserving Mobile Data Collection for Social and Behavioral Research
EAGER:SaTC:早期跨学科合作:用于社会和行为研究的隐私保护移动数据收集
  • 批准号:
    1915828
  • 财政年份:
    2019
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Collaborative: Advances in Socio-Algorithmic Information Diversity
EAGER:SaTC:早期跨学科合作:协作:社会算法信息多样性的进展
  • 批准号:
    1949077
  • 财政年份:
    2019
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Modeling Memory Illusion for Predicting Trust in Online Information
EAGER:SaTC:早期跨学科合作:建模记忆错觉以预测在线信息的信任
  • 批准号:
    1915801
  • 财政年份:
    2019
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了