EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Privacy Enhancing Framework to Advance Behavior Models

EAGER:SaTC:早期跨学科合作:隐私增强框架以推进行为模型

基本信息

  • 批准号:
    1915847
  • 负责人:
  • 金额:
    $ 29.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

This project is designed to advance research on problematic eating behavior. The project investigates wearable sensors to measure eating behavior and developing models of behavior that comprise multiple observable behaviors such as eating alone or with friends, or chewing speed. These data can help scientists improve upon current traditional methods such as self-reported eating diaries, which tend to be inconsistent, sparse, and rarely timely. We capture human behavior using a custom wearable augmented camera. Wearable cameras provide rich data, but raise privacy concerns. The project will address these concerns by building a framework using machine learning and information theory while including human-reported privacy concerns. The framework will address wearers' concerns that may limit recording authentic behavior in real-world settings and will optimize algorithms to enhance the detection and classification of human behavior. The project explores the acceptability of obfuscation techniques on varied activities and their requisite tasks. The proposed research will design a suite of computationally efficient task-specific algorithms that use raw images in computationally restrictive (in situ) and obfuscated images in unrestrictive environments (offline) to build information-performance curves for the scalable development of personalized ground truth wearable cameras. The project also will develop a modular, plug-and-play, low-complexity and efficient obfuscation computing hardware device to facilitate and accelerate the use of the proposed methods and algorithms. This work will validate an overeating behavior model in a real-world setting using the design framework and device, providing visual confirmation of eating behaviors, showing how it can be used to test existing models. This project is likely to be useful to other domains in the social sciences, fundamentally changing the way researchers build and validate behavioral models in real-world settings. There are potential applications in health (especially preventive medicine), social, and economic sciences: energy balance, infant development, medication adherence, consumer behavior, and human-environment interaction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在促进对有问题的饮食行为的研究。该项目研究可穿戴传感器来测量饮食行为,并开发包括多种可观察行为的行为模型,例如单独或与朋友一起吃饭,或咀嚼速度。这些数据可以帮助科学家改进目前的传统方法,例如自我报告的饮食日记,这些方法往往不一致,稀疏,而且很少及时。我们使用定制的可穿戴增强相机捕捉人类行为。可穿戴摄像头提供了丰富的数据,但也引发了隐私问题。该项目将通过使用机器学习和信息理论构建一个框架来解决这些问题,同时包括人类报告的隐私问题。该框架将解决佩戴者的担忧,这些担忧可能会限制在现实世界中记录真实行为,并将优化算法以增强对人类行为的检测和分类。该项目探讨了混淆技术在各种活动及其必要任务上的可接受性。拟议的研究将设计一套计算效率高的特定任务算法,这些算法使用计算限制性(原位)中的原始图像和非限制性环境(离线)中的模糊图像来构建信息性能曲线,用于个性化地面实况可穿戴相机的可扩展开发。该项目还将开发一种模块化、即插即用、低复杂度和高效的混淆计算硬件设备,以促进和加速所提出的方法和算法的使用。这项工作将使用设计框架和设备在现实世界中验证暴饮暴食行为模型,提供饮食行为的视觉确认,展示如何使用它来测试现有模型。这个项目可能对社会科学的其他领域有用,从根本上改变研究人员在现实世界中建立和验证行为模型的方式。该奖项在健康(特别是预防医学)、社会和经济科学领域有潜在的应用:能量平衡、婴儿发育、药物依从性、消费者行为和人与环境的相互作用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
HeatSight: Wearable Low-power Omni Thermal Sensing
HeatSight:可穿戴低功耗全热传感
  • DOI:
    10.1145/3460421.3478811
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alharbi, Rawan;Feng, Chunlin;Sen, Sougata;Jain, Jayalakshmi;Hester, Josiah;Alshurafa, Nabil
  • 通讯作者:
    Alshurafa, Nabil
To Mask or Not to Mask? Balancing Privacy with Visual Confirmation Utility in Activity-Oriented Wearable Cameras.
How to curtail oversensing in the home
  • DOI:
    10.1145/3396261
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    22.7
  • 作者:
    Connor Bolton;Kevin Fu;Josiah D. Hester;Jun Han
  • 通讯作者:
    Connor Bolton;Kevin Fu;Josiah D. Hester;Jun Han
ActiveSense: A Novel Active Learning Framework for Human Activity Recognition
ActiveSense:用于人类活动识别的新型主动学习框架
Towards Battery-Free Body Sensor Networks
迈向无电池身体传感器网络
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nabil Alshurafa其他文献

Personalized Mobile Health-Enhanced Cognitive Behavioral Intervention for Maternal Distress: Examining the Moderating Role of Adverse Childhood Experiences
针对孕产妇痛苦的个性化移动健康增强认知行为干预:检验不良童年经历的调节作用
  • DOI:
    10.7812/tpp/23.094
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    PhD Mft Ellen Goldstein;PhD Jillian S Merrick;Renee C Edwards;PhD Yudong Zhang;Mph Brianna Sinche;MA Julia Raven;BS Stephanie Krislov;MS Daniela Robledo;PhD Roger L Brown;P. M. Judith T Moskowitz;PhD Darius Tandon;Lauren S. Wakschlag;Brown Jillian S Goldstein;PhD Renee C Merrick;PhD Yudong Edwards;S. D. Zhang PhD;PhD Lauren S Tandon;PhD Wakschlag;Elizabeth Norton;Nabil Alshurafa;Bill Grobman;Leena Mitthal;Erin Ward;Gina Giase;A. Petitclerc;Peter Cummings;Aditi Rangarajan;John Rogers
  • 通讯作者:
    John Rogers
OR09-03-23 Development of an Automated Smartphone App Feature To Accurately Estimate Food Portion Sizes
  • DOI:
    10.1016/j.cdnut.2023.101331
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Annie Lin;Kevin Agwomoh;Christopher Colvin;Qiuyang Xu;Sougata Sen;Gabrielle Tan;Edward Chen;Mahdi Pedram;Nabil Alshurafa
  • 通讯作者:
    Nabil Alshurafa
A machine-learned model for predicting weight loss success using weight change features early in treatment
一个使用治疗早期体重变化特征来预测减肥成功的机器学习模型
  • DOI:
    10.1038/s41746-024-01299-y
  • 发表时间:
    2024-11-29
  • 期刊:
  • 影响因子:
    15.100
  • 作者:
    Farzad Shahabi;Samuel L. Battalio;Angela Fidler Pfammatter;Donald Hedeker;Bonnie Spring;Nabil Alshurafa
  • 通讯作者:
    Nabil Alshurafa
Developing and comparing a new BMI inclusive energy expenditure algorithm on wrist-worn wearables
  • DOI:
    10.1038/s41598-025-99963-0
  • 发表时间:
    2025-06-19
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Boyang Wei;Christopher Romano;Mahdi Pedram;Bonnie Nolan;Whitney A. Morelli;Nabil Alshurafa
  • 通讯作者:
    Nabil Alshurafa
Automatic, wearable-based, in-field eating detection approaches for public health research: a scoping review
用于公共卫生研究的基于可穿戴设备的自动现场进食检测方法:范围审查
  • DOI:
    10.1038/s41746-020-0246-2
  • 发表时间:
    2020-03-13
  • 期刊:
  • 影响因子:
    15.100
  • 作者:
    Brooke M. Bell;Ridwan Alam;Nabil Alshurafa;Edison Thomaz;Abu S. Mondol;Kayla de la Haye;John A. Stankovic;John Lach;Donna Spruijt-Metz
  • 通讯作者:
    Donna Spruijt-Metz

Nabil Alshurafa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Designing Trustworthy and Transparent Information Platforms
EAGER:SaTC:早期跨学科合作:设计值得信赖且透明的信息平台
  • 批准号:
    2128642
  • 财政年份:
    2021
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: A Case- and Play-Based Learning Module for Cybersecurity and Artificial Intelligence Education for Early Teen Learners
EAGER:SaTC-EDU:针对早期青少年学习者的网络安全和人工智能教育的基于案例和游戏的学习模块
  • 批准号:
    2113803
  • 财政年份:
    2021
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Instilling a Mindset of Adversarial Thinking into Computer Science Courses Early and Often
EAGER:SaTC-EDU:尽早且经常地将对抗性思维方式灌输到计算机科学课程中
  • 批准号:
    2039354
  • 财政年份:
    2020
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Designing Trustworthy and Transparent Information Platforms
EAGER:SaTC:早期跨学科合作:设计值得信赖且透明的信息平台
  • 批准号:
    1915755
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Collaborative: Advances in Socio-Algorithmic Information Diversity
EAGER:SaTC:早期跨学科合作:协作:社会算法信息多样性的进展
  • 批准号:
    1915833
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Improving the Bug Bounty System
EAGER:SaTC:早期跨学科合作:改进错误赏金系统
  • 批准号:
    1915815
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Multi-regulation computation
EAGER:SaTC:早期跨学科合作:多规则计算
  • 批准号:
    1915763
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Privacy-Preserving Mobile Data Collection for Social and Behavioral Research
EAGER:SaTC:早期跨学科合作:用于社会和行为研究的隐私保护移动数据收集
  • 批准号:
    1915828
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Collaborative: Advances in Socio-Algorithmic Information Diversity
EAGER:SaTC:早期跨学科合作:协作:社会算法信息多样性的进展
  • 批准号:
    1949077
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Modeling Memory Illusion for Predicting Trust in Online Information
EAGER:SaTC:早期跨学科合作:建模记忆错觉以预测在线信息的信任
  • 批准号:
    1915801
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了