Collaborative Research: Stochastic Models for Gene-based Association Analysis of Longitudinal Phenotypes with Sequence Data

合作研究:基于基因的纵向表型与序列数据关联分析的随机模型

基本信息

  • 批准号:
    1915904
  • 负责人:
  • 金额:
    $ 17.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Longitudinal genetic studies provide a valuable resource for exploring key genetic and environmental factors that affect complex traits over time. Genetic analysis of longitudinal data that incorporates trait variation over time is critical to understanding genetic influence and biological variations of complex diseases. In recent years, many genetic studies have been conducted in cohorts in which multiple measures on a trait of interest are collected on each subject over a period of time in addition to genome sequence data. These studies not only provide a more accurate assessment of disease condition but enable researchers to investigate the influence of genes on the trajectory of a trait and disease progression. This project focuses on the development of novel association testing methods to analyze sequencing genomic data at gene levels. The research will help provide insights into the underlying biology and progression of complex diseases.In longitudinal genetic studies and data from the Electronic Medical Records and Genomics (eMERGE) network, phenotypic traits and genetic variants may be viewed as functional data. Functional data analysis (FDA) can serve as a valuable tool for exploring key genetic and environmental factors that affect complex traits over time. In the presence of a large number of rare variants, gene-based analysis is a more powerful tool for gene mapping than testing of individual genetic variants. This project seeks to develop stochastic functional regression models and longitudinal sequence kernel association tests (LSKAT) to analyze longitudinal traits of population samples and pedigree or cryptically related samples, and to analyze pleiotropic traits. FDA techniques and kernel-based approaches are utilized to reduce the high dimensionality of sequencing data and draw useful information. A variance-covariance structure is constructed to model the measurement variation and correlations of an individual's trait based on the theory of stochastic processes and novel penalized spline models are used to estimate the trajectory mean function. The proposed methods and software will be tested and refined using real data sets and simulation studies. User-friendly software will be developed to implement the proposed methods and will be made publicly available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纵向遗传学研究为探索影响复杂性状的关键遗传和环境因素提供了宝贵的资源。结合性状随时间变化的纵向数据的遗传分析对于理解复杂疾病的遗传影响和生物学变异至关重要。近年来,许多遗传学研究在队列中进行,除了基因组序列数据外,还在一段时间内收集每个受试者对感兴趣的性状的多种测量。这些研究不仅提供了对疾病状况更准确的评估,而且使研究人员能够研究基因对性状和疾病进展轨迹的影响。该项目侧重于开发新的关联测试方法,以在基因水平上分析测序基因组数据。这项研究将有助于深入了解复杂疾病的潜在生物学和进展。在纵向遗传研究和来自电子医疗记录和基因组学(eMERGE)网络的数据中,表型特征和遗传变异可被视为功能数据。功能数据分析(FDA)可以作为一种有价值的工具,用于探索影响复杂性状的关键遗传和环境因素。在存在大量罕见变异的情况下,基于基因的分析是一种比单个遗传变异检测更强大的基因定位工具。本项目旨在建立随机功能回归模型和纵向序列核关联检验(LSKAT),以分析群体样本和家系或隐相关样本的纵向性状,并分析多效性状。利用FDA技术和基于核的方法来降低测序数据的高维数并提取有用的信息。基于随机过程理论,构建了方差-协方差结构来模拟个体特征的测量变异和相关性,并采用惩罚样条模型来估计轨迹均值函数。建议的方法和软件将使用真实数据集和模拟研究进行测试和改进。将开发便于使用的软件来实施建议的方法,并将向公众提供。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A comparison study of COVID-19 outbreaks in the United States between states with Republican and Democratic Governors
美国共和党和民主党州长各州之间 COVID-19 疫情的比较研究
  • DOI:
    10.3396/ijic.v17.20940
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tang, Wen;Wang, Shuqi;Xiong, Liyan;Fang, Mengyu;Chiu, Chi-yang;Loffredo, Christopher;Fan, Ruzong
  • 通讯作者:
    Fan, Ruzong
Stochastic functional linear models and Malliavin calculus
随机函数线性模型和 Malliavin 微积分
  • DOI:
    10.1007/s00180-021-01142-y
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Fan, Ruzong;Fang, Hong-Bin
  • 通讯作者:
    Fang, Hong-Bin
Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples
通过相关样本的基于功能回归的混合效应 Cox 模型,对生存性状进行基于基因的关联分析
  • DOI:
    10.1002/gepi.22254
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Chiu, Chi‐yang;Zhang, Bingsong;Wang, Shuqi;Shao, Jingyi;Lakhal‐Chaieb, M'Hamed Lajmi;Cook, Richard J.;Wilson, Alexander F.;Bailey‐Wilson, Joan E.;Xiong, Momiao;Fan, Ruzong
  • 通讯作者:
    Fan, Ruzong
Stochastic functional linear models for gene-based association analysis of quantitative traits in longitudinal studies
纵向研究中基于基因的数量性状关联分析的随机函数线性模型
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Bingsong Zhang, Shuqi Wang
  • 通讯作者:
    Bingsong Zhang, Shuqi Wang
Gene‐based analysis of bi‐variate survival traits via functional regressions with applications to eye diseases
通过功能回归对双变量生存特征进行基于基因的分析并应用于眼部疾病
  • DOI:
    10.1002/gepi.22381
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Zhang, Bingsong;Chiu, Chi‐Yang;Yuan, Fang;Sang, Tian;Cook, Richard J;Wilson, Alexander F.;Bailey‐Wilson, Joan E.;Chew, Emily Y.;Xiong, Momiao;Fan, Ruzong
  • 通讯作者:
    Fan, Ruzong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruzong Fan其他文献

Trends in actionable mutations for recurrent ovarian and endometrial cancer at a single institution
  • DOI:
    10.1016/s0090-8258(21)01249-x
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Theresa Kuhn;Ami Vaidya;Merieme Klobocista;Megan Lander;Ruzong Fan;Mira Hellmann
  • 通讯作者:
    Mira Hellmann
Diffusion process calculations for mutant genes in nonstationary populations
非平稳群体中突变基因的扩散过程计算
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruzong Fan;K. Lange
  • 通讯作者:
    K. Lange
Decomposition of a class of functionals and the predictable representation theorem on Banach spaces
Applications of a formula for the variance function of a stochastic process
随机过程方差函数公式的应用
  • DOI:
    10.1016/s0167-7152(98)00198-9
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruzong Fan;K. Lange;Edsel A. Peña
  • 通讯作者:
    Edsel A. Peña
Representation of martingale additive functionals on Banach spaces

Ruzong Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruzong Fan', 18)}}的其他基金

Haplotype Linkage and Association Mapping of Quantitative Trait Loci
数量性状基因座的单倍型连锁和关联作图
  • 批准号:
    0505025
  • 财政年份:
    2005
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337426
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325184
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226347
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229345
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226348
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了