Understanding the Fundamental Mechanisms Governing Tensile Strength of High-Performance Small-Scale Carbon/Glass Fibers
了解控制高性能小型碳/玻璃纤维拉伸强度的基本机制
基本信息
- 批准号:1915948
- 负责人:
- 金额:$ 51.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is jointly funded by the Mechanics of Materials and Structures program and the Established Program to Stimulate Competitive Research (EPSCoR). High performance carbon and glass fibers are widely used as reinforcements in composite material systems for automotive, aerospace and defense applications. The tensile strength of commercial fibers is significantly less than its theoretical limits. The composite systems are often overdesigned, thus any increase in the fiber tensile strength can yield significant cost and weight savings. Modifications of fiber surface treatment (sizing) during manufacturing is a potential route to enhance the fiber strength. Single fiber tensile testing at millimeter-scale is typically used to characterize the effect of sizing on the fiber strength. However, the longitudinal tensile failure of a composite is governed by the fiber strength distribution and defects at microscale lengths. This award supports the fundamental research that overcomes current challenges in characterizing the tensile strength of the fibers at the microscale using experimental and data-driven computational methods. Besides the scientific understanding, this project will also provide a guiding template for the fiber manufacturing process through controlled surface treatment. A direct consequence of improving the tensile strength would be lightweight structures for applications in aerospace, automotive, and sports equipment sectors. As part of this project, a specific effort will also be aimed at recruiting graduate and undergraduate students from under-represented groups through the Society for Women Engineers at the University of South Carolina. Furthermore, the experimental setup developed in this research will be incorporated into a lab course for undergraduate students.A comprehensive understanding of the discrepancy between experimental tensile strength of commercial fibers and its theoretical limits has been elusive, and whether intrinsic fiber strength follows a Weibull statistical distribution remains an open question. This research aims to elucidate the fundamental mechanisms that govern the tensile strength of fibers at microscale gage lengths. Experimental and data-driven techniques will be employed to study the strength distribution of the fibers at microscales. Microscale gage lengths will be accessed by developing a novel in situ transverse loading experiment on single fibers under scanning electron microscope combined with micro-digital image correlation. Data-driven machine learning techniques will be applied to establish the scaling laws of strength. This research will provide new insights into the functional form of the survival probability and strength-controlling mechanisms in fibers influenced by fiber sizing. This new fundamental knowledge of processing (sizing)-structure (defect distribution)-property (tensile strength distribution) relationship at microscale lengths will enable the establishment of scaling laws for strength and will serve as a guide for fiber manufacturing process to enhance the fiber tensile strength.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由材料和结构计划的机制以及刺激竞争研究的既定计划(EPSCOR)共同资助。高性能碳和玻璃纤维被广泛用作用于汽车,航空航天和防御应用的复合材料系统中的增援。商业纤维的拉伸强度大大低于其理论极限。复合系统通常过度设计,因此纤维抗拉强度的任何增加都可以节省大量成本和体重。制造过程中纤维表面处理(尺寸)的修饰是增强纤维强度的潜在途径。毫米级时的单纤维拉伸测试通常用于表征尺寸对纤维强度的影响。但是,复合材料的纵向拉伸失败受纤维强度分布和显微镜长度下的缺陷的控制。该奖项支持基本研究,该研究克服了使用实验和数据驱动的计算方法来表征微观纤维的拉伸强度的当前挑战。除了科学的理解外,该项目还将通过受控的表面处理为纤维制造过程提供指导模板。提高拉伸强度的直接后果将是用于航空,汽车和运动器材部门应用的轻量级结构。作为该项目的一部分,还将通过南卡罗来纳大学的女工程师协会招募来自代表性不足的团体的研究生和本科生。此外,这项研究中开发的实验设置将被纳入实验室课程中,以供本科生。对商业纤维的实验拉伸强度及其理论限制之间的差异,并且固有的纤维强度是否遵循Weibull统计分布仍然是一个悬而未决的问题。这项研究旨在阐明在微观量表长度上控制纤维的拉伸强度的基本机制。将采用实验和数据驱动的技术来研究显微镜纤维的强度分布。通过在扫描电子显微镜下与微数图像相关性结合的单个纤维上的单个横向载荷实验,将访问微观量表长度。数据驱动的机器学习技术将应用于建立强度缩放定律。这项研究将为受纤维尺寸影响的纤维中生存概率和强度控制机制的功能形式提供新的见解。这种新的关于处理(尺寸)结构(缺陷分布)的新基本知识 - 范围(拉伸强度分布)在显微镜长度上的关系将使能够建立缩放定律以实现力量,并将作为纤维制造过程的指南,以增强光纤牵引力。这些奖项通过评估NSF的授权及其授权的依据,并具有依据的授权,并具有良好的影响力。 标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sub-microscale speckle pattern creation on single carbon fibers for in-situ DIC experiments
用于原位 DIC 实验的单碳纤维上的亚微米级散斑图案创建
- DOI:10.12783/asc36/35902
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Shah K, Yang G
- 通讯作者:Shah K, Yang G
Sub-microscale speckle pattern creation on single carbon fibers for scanning electron microscope-digital image correlation (SEM-DIC) experiments
- DOI:10.1016/j.compositesa.2022.107331
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Karan Shah;S. Sockalingam;H. O'Brien;G. Yang;Mohammad El Loubani;Dongkyu Lee;M. Sutton
- 通讯作者:Karan Shah;S. Sockalingam;H. O'Brien;G. Yang;Mohammad El Loubani;Dongkyu Lee;M. Sutton
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subramani Sockalingam其他文献
Simulations and experiments for automated fiber placement of prepreg slit tape: Wrinkle formation and fundamental observations
- DOI:
10.1016/j.compositesb.2020.108287 - 发表时间:
2020-11-15 - 期刊:
- 影响因子:
- 作者:
Sreehari Rajan;Michael A. Sutton;Subramani Sockalingam;William McMakin;Zafer Gurdal;Addis Kidane - 通讯作者:
Addis Kidane
Subramani Sockalingam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subramani Sockalingam', 18)}}的其他基金
Fundamental Studies of Process-Material Interactions in Advanced Adhesion-Driven Manufacturing with Automated Placement of Uncured Thermoset Tows as Model Process
以自动放置未固化热固性丝束作为模型工艺的先进粘合驱动制造中工艺与材料相互作用的基础研究
- 批准号:
2127361 - 财政年份:2022
- 资助金额:
$ 51.16万 - 项目类别:
Standard Grant
相似国自然基金
基于石墨间层质心插入理论的插层化学基本反应机制研究
- 批准号:22379110
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于体型结构单体的深度纯化介质构建机制与高纯洁净基本原理的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于体型结构单体的深度纯化介质构建机制与高纯洁净基本原理的研究
- 批准号:22208101
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于自我决定理论的基层医生服务动机内化对基本医疗服务质量的作用机制研究
- 批准号:72104195
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于自我决定理论的基层医生服务动机内化对基本医疗服务质量的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding Fundamental Mechanisms that Underlie Nano-Neuro Interactions
了解纳米神经相互作用的基本机制
- 批准号:
2331330 - 财政年份:2024
- 资助金额:
$ 51.16万 - 项目类别:
Standard Grant
Understanding Fundamental Mechanisms in Gas Sensing to Aid Future Design
了解气体传感的基本机制以帮助未来的设计
- 批准号:
2247996 - 财政年份:2019
- 资助金额:
$ 51.16万 - 项目类别:
Studentship
CAREER: Understanding the fundamental mechanisms of vesiculation and solute encapsulation of smectic phospholipid films on cellulose
职业:了解纤维素上近晶磷脂膜的囊泡化和溶质封装的基本机制
- 批准号:
1848573 - 财政年份:2019
- 资助金额:
$ 51.16万 - 项目类别:
Continuing Grant
GOALI: Enabling Ultra-Low Viscosity Lubricants Through Fundamental Understanding of Additive Interactions and Tribofilm Growth Mechanisms: An In-Situ Study
GOALI:通过对添加剂相互作用和摩擦膜生长机制的基本了解,实现超低粘度润滑剂:原位研究
- 批准号:
1728360 - 财政年份:2017
- 资助金额:
$ 51.16万 - 项目类别:
Standard Grant
Understanding the fundamental mechanisms of viral activation in the host
了解宿主病毒激活的基本机制
- 批准号:
418127-2012 - 财政年份:2017
- 资助金额:
$ 51.16万 - 项目类别:
Discovery Grants Program - Individual