Understanding the Fundamental Mechanisms Governing Tensile Strength of High-Performance Small-Scale Carbon/Glass Fibers
了解控制高性能小型碳/玻璃纤维拉伸强度的基本机制
基本信息
- 批准号:1915948
- 负责人:
- 金额:$ 51.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is jointly funded by the Mechanics of Materials and Structures program and the Established Program to Stimulate Competitive Research (EPSCoR). High performance carbon and glass fibers are widely used as reinforcements in composite material systems for automotive, aerospace and defense applications. The tensile strength of commercial fibers is significantly less than its theoretical limits. The composite systems are often overdesigned, thus any increase in the fiber tensile strength can yield significant cost and weight savings. Modifications of fiber surface treatment (sizing) during manufacturing is a potential route to enhance the fiber strength. Single fiber tensile testing at millimeter-scale is typically used to characterize the effect of sizing on the fiber strength. However, the longitudinal tensile failure of a composite is governed by the fiber strength distribution and defects at microscale lengths. This award supports the fundamental research that overcomes current challenges in characterizing the tensile strength of the fibers at the microscale using experimental and data-driven computational methods. Besides the scientific understanding, this project will also provide a guiding template for the fiber manufacturing process through controlled surface treatment. A direct consequence of improving the tensile strength would be lightweight structures for applications in aerospace, automotive, and sports equipment sectors. As part of this project, a specific effort will also be aimed at recruiting graduate and undergraduate students from under-represented groups through the Society for Women Engineers at the University of South Carolina. Furthermore, the experimental setup developed in this research will be incorporated into a lab course for undergraduate students.A comprehensive understanding of the discrepancy between experimental tensile strength of commercial fibers and its theoretical limits has been elusive, and whether intrinsic fiber strength follows a Weibull statistical distribution remains an open question. This research aims to elucidate the fundamental mechanisms that govern the tensile strength of fibers at microscale gage lengths. Experimental and data-driven techniques will be employed to study the strength distribution of the fibers at microscales. Microscale gage lengths will be accessed by developing a novel in situ transverse loading experiment on single fibers under scanning electron microscope combined with micro-digital image correlation. Data-driven machine learning techniques will be applied to establish the scaling laws of strength. This research will provide new insights into the functional form of the survival probability and strength-controlling mechanisms in fibers influenced by fiber sizing. This new fundamental knowledge of processing (sizing)-structure (defect distribution)-property (tensile strength distribution) relationship at microscale lengths will enable the establishment of scaling laws for strength and will serve as a guide for fiber manufacturing process to enhance the fiber tensile strength.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由材料与结构力学项目和已建立的激励竞争性研究项目(EPSCoR)共同资助。高性能碳纤维和玻璃纤维广泛用作汽车、航空航天和国防等复合材料系统的增强材料。商业纤维的拉伸强度明显低于其理论极限。复合材料系统往往设计过度,因此纤维拉伸强度的任何提高都可以显著节省成本和重量。在生产过程中对纤维表面处理(上浆)进行改性是提高纤维强度的一条潜在途径。毫米级的单纤维拉伸测试通常用于表征上浆对纤维强度的影响。然而,复合材料的纵向拉伸破坏是由纤维强度分布和微观长度上的缺陷决定的。该奖项支持基础研究,这些研究克服了目前在使用实验和数据驱动的计算方法在微尺度上表征纤维拉伸强度方面的挑战。除了科学的认识外,该项目还将为通过受控表面处理的纤维制造工艺提供指导模板。提高抗拉强度的直接结果将是航空航天、汽车和运动器材部门应用的轻量化结构。作为该项目的一部分,还将作出具体努力,通过南卡罗来纳大学女工程师协会从任职人数不足的群体中招聘研究生和本科生。此外,这项研究中开发的实验装置将被纳入本科生的实验课程。商业纤维的实验拉伸强度与其理论极限之间的差异一直难以得到全面的理解,内在纤维强度是否服从威布尔统计分布仍然是一个悬而未决的问题。这项研究旨在阐明控制微米级纤维拉伸强度的基本机制。实验和数据驱动技术将被用来研究纤维在微观尺度上的强度分布。通过发展一种新的扫描电子显微镜下的单纤维横向加载实验,结合显微数字图像相关技术,可以获得微尺度的量规长度。将应用数据驱动的机器学习技术来建立强度的标度定律。这项研究将对纤维上浆影响纤维存活概率和强度控制机制的函数形式提供新的见解。这一新的微尺度加工(施胶)-结构(缺陷分布)-性能(拉伸强度分布)关系的基本知识将有助于建立强度的比例定律,并将作为纤维制造工艺的指南,以提高纤维的拉伸强度。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sub-microscale speckle pattern creation on single carbon fibers for in-situ DIC experiments
用于原位 DIC 实验的单碳纤维上的亚微米级散斑图案创建
- DOI:10.12783/asc36/35902
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Shah K, Yang G
- 通讯作者:Shah K, Yang G
Sub-microscale speckle pattern creation on single carbon fibers for scanning electron microscope-digital image correlation (SEM-DIC) experiments
- DOI:10.1016/j.compositesa.2022.107331
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Karan Shah;S. Sockalingam;H. O'Brien;G. Yang;Mohammad El Loubani;Dongkyu Lee;M. Sutton
- 通讯作者:Karan Shah;S. Sockalingam;H. O'Brien;G. Yang;Mohammad El Loubani;Dongkyu Lee;M. Sutton
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subramani Sockalingam其他文献
Short and long contact timescale Mode I tack response of uncured thermoset carbon/epoxy composite prepreg: An experimental study
未固化热固性碳/环氧复合预浸料的短和长接触时间尺度模式I粘性响应:一项实验研究
- DOI:
10.1016/j.compositesb.2025.112343 - 发表时间:
2025-05-15 - 期刊:
- 影响因子:14.200
- 作者:
Debrup Chakraborty;Subramani Sockalingam;Karan Kodagali;Michael A. Sutton;Sreehari Rajan Kattil - 通讯作者:
Sreehari Rajan Kattil
Simulations and experiments for automated fiber placement of prepreg slit tape: Wrinkle formation and fundamental observations
- DOI:
10.1016/j.compositesb.2020.108287 - 发表时间:
2020-11-15 - 期刊:
- 影响因子:
- 作者:
Sreehari Rajan;Michael A. Sutton;Subramani Sockalingam;William McMakin;Zafer Gurdal;Addis Kidane - 通讯作者:
Addis Kidane
Creation of submicron-scale metal oxide speckle patterns on single carbon fibers by a thermodynamically and kinetically controlled nonequilibrium process
通过热力学和动力学控制的非平衡过程在单碳纤维上创建亚微米级金属氧化物斑点图案
- DOI:
10.1016/j.matdes.2025.113582 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:7.900
- 作者:
Mohammad El Loubani;Karan Shah;Habib Rostaghi Chalaki;Gene Yang;Subramani Sockalingam;Dongkyu Lee - 通讯作者:
Dongkyu Lee
Strain rate sensitivity of rotating-square auxetic metamaterials
旋转方形负泊松比超材料的应变速率敏感性
- DOI:
10.1016/j.ijimpeng.2024.105128 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:5.700
- 作者:
Behrad Koohbor;Kazi Zahir Uddin;Matthew Heras;George Youssef;Dennis Miller;Subramani Sockalingam;Michael A. Sutton;Thomas Kiel - 通讯作者:
Thomas Kiel
Subramani Sockalingam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subramani Sockalingam', 18)}}的其他基金
Fundamental Studies of Process-Material Interactions in Advanced Adhesion-Driven Manufacturing with Automated Placement of Uncured Thermoset Tows as Model Process
以自动放置未固化热固性丝束作为模型工艺的先进粘合驱动制造中工艺与材料相互作用的基础研究
- 批准号:
2127361 - 财政年份:2022
- 资助金额:
$ 51.16万 - 项目类别:
Standard Grant
相似海外基金
Understanding Fundamental Mechanisms that Underlie Nano-Neuro Interactions
了解纳米神经相互作用的基本机制
- 批准号:
2331330 - 财政年份:2024
- 资助金额:
$ 51.16万 - 项目类别:
Standard Grant
Understanding Fundamental Mechanisms in Gas Sensing to Aid Future Design
了解气体传感的基本机制以帮助未来的设计
- 批准号:
2247996 - 财政年份:2019
- 资助金额:
$ 51.16万 - 项目类别:
Studentship
CAREER: Understanding the fundamental mechanisms of vesiculation and solute encapsulation of smectic phospholipid films on cellulose
职业:了解纤维素上近晶磷脂膜的囊泡化和溶质封装的基本机制
- 批准号:
1848573 - 财政年份:2019
- 资助金额:
$ 51.16万 - 项目类别:
Continuing Grant
GOALI: Enabling Ultra-Low Viscosity Lubricants Through Fundamental Understanding of Additive Interactions and Tribofilm Growth Mechanisms: An In-Situ Study
GOALI:通过对添加剂相互作用和摩擦膜生长机制的基本了解,实现超低粘度润滑剂:原位研究
- 批准号:
1728360 - 财政年份:2017
- 资助金额:
$ 51.16万 - 项目类别:
Standard Grant
Understanding the fundamental mechanisms of viral activation in the host
了解宿主病毒激活的基本机制
- 批准号:
418127-2012 - 财政年份:2017
- 资助金额:
$ 51.16万 - 项目类别:
Discovery Grants Program - Individual
Understanding the Fundamental Mechanisms of Serrated Flow in BCC Alloys and their Impact on Mechanical Response: A Validated Mesoscopic Computational Study
了解 BCC 合金中锯齿状流动的基本机制及其对机械响应的影响:经过验证的介观计算研究
- 批准号:
1611342 - 财政年份:2016
- 资助金额:
$ 51.16万 - 项目类别:
Standard Grant
Understanding the fundamental mechanisms of viral activation in the host
了解宿主病毒激活的基本机制
- 批准号:
418127-2012 - 财政年份:2015
- 资助金额:
$ 51.16万 - 项目类别:
Discovery Grants Program - Individual
Understanding the fundamental mechanisms of viral activation in the host
了解宿主病毒激活的基本机制
- 批准号:
418127-2012 - 财政年份:2014
- 资助金额:
$ 51.16万 - 项目类别:
Discovery Grants Program - Individual
Understanding mass generation mechanisms of fundamental particles
了解基本粒子的质量生成机制
- 批准号:
FT130100303 - 财政年份:2014
- 资助金额:
$ 51.16万 - 项目类别:
ARC Future Fellowships
Understanding the fundamental mechanisms of viral activation in the host
了解宿主病毒激活的基本机制
- 批准号:
418127-2012 - 财政年份:2013
- 资助金额:
$ 51.16万 - 项目类别:
Discovery Grants Program - Individual