Dynamic Multivariate Normative Comparison and Risk Screening for Alzheimer's Disease Progression
阿尔茨海默病进展的动态多变量规范比较和风险筛查
基本信息
- 批准号:1916001
- 负责人:
- 金额:$ 17.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on the development of statistical methods for analyzing data from the Alzheimer Disease (AD) Research Center (ADRC). The first objective is to develop robust procedures to classify cognitive impairment over repeated visits. This has important clinical implications, as current diagnostic methods tend to falsely flag healthy subjects as impaired. The second project focuses on systematic evaluation of high-dimensional risk factors to select promising features that can separate those subjects who will develop AD, from those who might die, and those who will be alive and disease free by a certain time point. The completion of this project will lead to the identification of important risk factors that are predictive of both AD and survival. These newly identified biological, clinical, and genetic markers will guide future studies developing targeted intervention for AD. The proposed methods are relevant for disease diagnosis and risk screening but may also be applied to other areas such as economics, finance and engineering. The project will integrate research and education through the mentoring of graduate students. The first project concerns longitudinal measures of multiple domain scores of cognitive functioning modeled using multivariate mixed-effect models. A longitudinal multivariate normative comparison (MNC) statistic is then computed to measure the distance between a subject's domain scores and the estimated norm of healthy controls. Different thresholding methods are proposed for the longitudinal MNC based on the Chi-square approximation and permutation to identify cognitive impairment from retrospective data. Two familywise-error-rate controlling procedures are developed to dynamically screen for cognitive impairment at each ongoing visit, by comparing the p-values from the longitudinal MNC with adaptive significance levels. In the second project, a recently developed diagnostic measure of the volume under the ROC surface (VUS) is adopted as a model-free screening metric for ordinal competing endpoints. The VUS can be readily estimated as a concordance probability by some weighted U-statistics. The proposed screening procedure based on the U-type estimator of the VUS provides systematic and dynamic evaluation of markers' discriminatory capacity without any model assumptions. As the first screening method developed specifically for ordinal disease progression, the successful completion of the second project will contribute to the broader field of high-dimensional risk screening.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是开发用于分析阿尔茨海默病 (AD) 研究中心 (ADRC) 数据的统计方法。 第一个目标是开发稳健的程序,对重复访问中的认知障碍进行分类。这具有重要的临床意义,因为当前的诊断方法往往会错误地将健康受试者标记为受损。 第二个项目的重点是对高维风险因素进行系统评估,以选择有希望的特征,这些特征可以将那些将发展为 AD 的受试者、那些可能死亡的受试者以及那些在某个时间点仍存活且无疾病的受试者区分开来。 该项目的完成将有助于识别可预测 AD 和生存的重要风险因素。 这些新发现的生物、临床和遗传标记将指导未来针对 AD 开发针对性干预措施的研究。 所提出的方法与疾病诊断和风险筛查相关,但也可以应用于经济、金融和工程等其他领域。 该项目将通过研究生的指导将研究和教育结合起来。第一个项目涉及使用多元混合效应模型建模的认知功能的多个领域得分的纵向测量。 然后计算纵向多变量规范比较 (MNC) 统计量,以测量受试者的领域得分与健康对照的估计规范之间的距离。基于卡方近似和排列,针对纵向 MNC 提出了不同的阈值方法,以从回顾性数据中识别认知障碍。 开发了两种家庭错误率控制程序,通过将纵向 MNC 的 p 值与自适应显着性水平进行比较,动态筛查每次持续访视的认知障碍。在第二个项目中,采用最近开发的 ROC 表面下体积 (VUS) 诊断测量方法作为有序竞争终点的无模型筛选指标。 VUS 可以很容易地通过一些加权 U 统计量估计为一致性概率。所提出的基于 VUS U 型估计量的筛选程序无需任何模型假设即可对标记的辨别能力进行系统和动态的评估。作为第一个专门针对有序疾病进展开发的筛查方法,第二个项目的成功完成将为更广泛的高维风险筛查领域做出贡献。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying diagnostic accuracy improvement of new biomarkers for competing risk outcomes
量化新生物标志物诊断准确性的提高,以应对竞争风险结果
- DOI:10.1093/biostatistics/kxaa048
- 发表时间:2020
- 期刊:
- 影响因子:2.1
- 作者:Wang, Zheng;Cheng, Yu;Seaberg, Eric C;Becker, James T
- 通讯作者:Becker, James T
Quantile association regression on bivariate survival data
- DOI:10.1002/cjs.11577
- 发表时间:2020-11-01
- 期刊:
- 影响因子:0
- 作者:CHEN LW;CHENG Y;DING Y;LI R
- 通讯作者:LI R
Dynamic impairment classification through arrayed comparisons
- DOI:10.1002/sim.9601
- 发表时间:2022-11-01
- 期刊:
- 影响因子:2
- 作者:Wang,Zheng;Wang,Zi;Becker,James T.
- 通讯作者:Becker,James T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Cheng其他文献
Theory-screened MOF-based single-atom catalysts for facile and effective therapy of biofilm-induced periodontitis
理论筛选的基于 MOF 的单原子催化剂可轻松有效地治疗生物膜引起的牙周炎
- DOI:
10.1016/j.cej.2021.133279 - 发表时间:
2021-11 - 期刊:
- 影响因子:15.1
- 作者:
Yi Yu;Yu Cheng;Lei Tan;Xiangmei Liu;Zhaoyang Li;Yufeng Zheng;Tao Wu;Zhenduo Cui;Shengli Zhu;Shuilin Wu - 通讯作者:
Shuilin Wu
Object tracking in the complex environment based on SIFT
基于SIFT的复杂环境目标跟踪
- DOI:
10.1109/iccsn.2011.6014410 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yu Cheng;Liu Yu;Zhang Jing;Yun Ting - 通讯作者:
Yun Ting
A new model for Double Diffusion + Turbulence
双扩散湍流的新模型
- DOI:
10.1029/2007gl032580 - 发表时间:
2008 - 期刊:
- 影响因子:5.2
- 作者:
V. Canuto;Yu Cheng;A. Howard - 通讯作者:
A. Howard
A supervisory hierarchical control approach for text to 2D scene generation
用于文本到 2D 场景生成的监督分层控制方法
- DOI:
10.1109/robio.2017.8324755 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yu Cheng;Zhiyong Sun;Sheng Bi;Congjian Li;Ning Xi - 通讯作者:
Ning Xi
Immune landscape of advanced gastric cancer tumor microenvironment identifes immunotherapeutic relevant gene signature
晚期胃癌肿瘤微环境的免疫景观识别免疫治疗相关基因特征
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.8
- 作者:
Simeng Zhang;Mengzhu Lv;Yu Cheng;Shuo Wang;Ce L;Xiujuan Qu - 通讯作者:
Xiujuan Qu
Yu Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Cheng', 18)}}的其他基金
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
- 批准号:
2122628 - 财政年份:2022
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
- 批准号:
2307106 - 财政年份:2022
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
CNS Core: Small: Application-Oriented Scheduling for Optimizing Information Freshness in Wireless Networks
CNS 核心:小型:面向应用的调度,用于优化无线网络中的信息新鲜度
- 批准号:
2008092 - 财政年份:2020
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
NeTS: Small: Machine Learning Meets Wireless Network Optimization: Exploring the Latent Knowledge
NeTS:小型:机器学习遇见无线网络优化:探索潜在知识
- 批准号:
1816908 - 财政年份:2018
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
A Fundamental Study on Energy Efficient Wireless Communication Networks: Modeling, Algorithms, and Applications
节能无线通信网络的基础研究:建模、算法和应用
- 批准号:
1610874 - 财政年份:2016
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2016 IEEE Global Communications Conference (IEEE GLOBECOM)
2016 年 IEEE 全球通信会议 (IEEE GLOBECOM) 的 NSF 学生旅费补助
- 批准号:
1643335 - 财政年份:2016
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Towards Reliable, Energy-Efficient, and Secure Vehicular Networks
NetS:小型:协作研究:迈向可靠、节能和安全的车辆网络
- 批准号:
1320736 - 财政年份:2014
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Association, Regression and Diagnostic Accuracy Analyses of Competing Risks Data
竞争风险数据的关联、回归和诊断准确性分析
- 批准号:
1207711 - 财政年份:2012
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
TC: Small: Real-Time Intrusion Detection for VoIP over IEEE 802.11 Based Wireless Networks: An Analytical Approach for Guaranteed Performance
TC:小型:基于 IEEE 802.11 的无线网络的 VoIP 实时入侵检测:保证性能的分析方法
- 批准号:
1117687 - 财政年份:2012
- 资助金额:
$ 17.99万 - 项目类别:
Continuing Grant
CAREER: Exploring the Underexplored: A Fundamental Study of Optimal Resource Allocation and Low-Complexity Algorithms in Multi-Radio Multi-Channel Wireless Networks
职业:探索未开发领域:多无线电多通道无线网络中最优资源分配和低复杂度算法的基础研究
- 批准号:
1053777 - 财政年份:2011
- 资助金额:
$ 17.99万 - 项目类别:
Continuing Grant
相似海外基金
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
- 批准号:
24K07389 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
- 批准号:
23K03219 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
- 批准号:
2239067 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Continuing Grant
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
- 批准号:
23K14813 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CDS&E: Immersive Virtual Reality for Discovering Hidden Chemical Information and Improving Multivariate Modeling and Predication
CDS
- 批准号:
2305020 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Applications of Algebraic Geometry to Multivariate Gaussian Models
代数几何在多元高斯模型中的应用
- 批准号:
2306672 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Continuing Grant
Multivariate analysis methods for optical imaging measurements of macroscopic inhomogeneous structures
宏观非均匀结构光学成像测量的多元分析方法
- 批准号:
23K03283 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Simplification of solution matrices in multivariate data analysis by integrating of sparseness and simple structure
通过稀疏性和简单结构的结合简化多元数据分析中的解矩阵
- 批准号:
23K16854 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of non-invasive measurement and induction of multivariate sharp-wave ripples in the human brain
开发人脑多元尖波波纹的非侵入性测量和感应
- 批准号:
23K14679 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring and exploiting new representations for multivariate extremes
探索和利用多元极值的新表示
- 批准号:
EP/X010449/1 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Research Grant














{{item.name}}会员




