Dynamic Multivariate Normative Comparison and Risk Screening for Alzheimer's Disease Progression

阿尔茨海默病进展的动态多变量规范比较和风险筛查

基本信息

  • 批准号:
    1916001
  • 负责人:
  • 金额:
    $ 17.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project focuses on the development of statistical methods for analyzing data from the Alzheimer Disease (AD) Research Center (ADRC). The first objective is to develop robust procedures to classify cognitive impairment over repeated visits. This has important clinical implications, as current diagnostic methods tend to falsely flag healthy subjects as impaired. The second project focuses on systematic evaluation of high-dimensional risk factors to select promising features that can separate those subjects who will develop AD, from those who might die, and those who will be alive and disease free by a certain time point. The completion of this project will lead to the identification of important risk factors that are predictive of both AD and survival. These newly identified biological, clinical, and genetic markers will guide future studies developing targeted intervention for AD. The proposed methods are relevant for disease diagnosis and risk screening but may also be applied to other areas such as economics, finance and engineering. The project will integrate research and education through the mentoring of graduate students. The first project concerns longitudinal measures of multiple domain scores of cognitive functioning modeled using multivariate mixed-effect models. A longitudinal multivariate normative comparison (MNC) statistic is then computed to measure the distance between a subject's domain scores and the estimated norm of healthy controls. Different thresholding methods are proposed for the longitudinal MNC based on the Chi-square approximation and permutation to identify cognitive impairment from retrospective data. Two familywise-error-rate controlling procedures are developed to dynamically screen for cognitive impairment at each ongoing visit, by comparing the p-values from the longitudinal MNC with adaptive significance levels. In the second project, a recently developed diagnostic measure of the volume under the ROC surface (VUS) is adopted as a model-free screening metric for ordinal competing endpoints. The VUS can be readily estimated as a concordance probability by some weighted U-statistics. The proposed screening procedure based on the U-type estimator of the VUS provides systematic and dynamic evaluation of markers' discriminatory capacity without any model assumptions. As the first screening method developed specifically for ordinal disease progression, the successful completion of the second project will contribute to the broader field of high-dimensional risk screening.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的重点是开发统计方法来分析来自阿尔茨海默病研究中心(ADRC)的数据。第一个目标是开发出可靠的程序,对反复就诊的认知障碍进行分类。这具有重要的临床意义,因为目前的诊断方法往往错误地将健康受试者标记为受损。第二个项目侧重于系统地评估高维风险因素,以选择有希望的特征,这些特征可以区分那些将发展为AD的受试者,那些可能死亡的受试者,以及那些将在某个时间点存活并无疾病的受试者。该项目的完成将导致识别预测AD和生存的重要风险因素。这些新发现的生物学、临床和遗传标记将指导未来研究开发针对AD的靶向干预措施。所提出的方法不仅适用于疾病诊断和风险筛查,还可应用于经济、金融和工程等其他领域。该项目将通过对研究生的指导,将研究和教育结合起来。第一个项目涉及使用多元混合效应模型建模的认知功能多领域得分的纵向测量。然后计算纵向多变量规范比较(MNC)统计量来测量受试者的领域得分与健康对照的估计规范之间的距离。提出了基于卡方近似和排列的纵向MNC阈值识别方法,从回顾性数据中识别认知障碍。通过比较纵向MNC的p值和自适应显著性水平,我们开发了两个家庭误差率控制程序,在每次持续访问中动态筛查认知障碍。在第二个项目中,采用最近开发的ROC表面下体积(VUS)的诊断测量作为有序竞争终点的无模型筛选指标。用加权u统计量可以很容易地估计出VUS的一致性概率。提出的基于VUS的u型估计器的筛选程序在没有任何模型假设的情况下,对标记物的区分能力进行了系统和动态的评估。作为第一个专门针对有序疾病进展开发的筛查方法,第二个项目的成功完成将有助于更广泛的高维风险筛查领域。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying diagnostic accuracy improvement of new biomarkers for competing risk outcomes
量化新生物标志物诊断准确性的提高,以应对竞争风险结果
  • DOI:
    10.1093/biostatistics/kxaa048
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Wang, Zheng;Cheng, Yu;Seaberg, Eric C;Becker, James T
  • 通讯作者:
    Becker, James T
Quantile association regression on bivariate survival data
Dynamic impairment classification through arrayed comparisons
  • DOI:
    10.1002/sim.9601
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Wang,Zheng;Wang,Zi;Becker,James T.
  • 通讯作者:
    Becker,James T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Cheng其他文献

Precision enhancement of three-dimensional displacement tracing for nano-fabrication based on low coherence interferometry
基于低相干干涉技术的纳米加工三维位移追踪精度提升
  • DOI:
    10.1364/oe.27.028324
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Yu Cheng;Xiangchao Zhang;He Yuan;Wei Wang;Min Xu
  • 通讯作者:
    Min Xu
Anti-inflammatory effect of Yu-Ping-Feng-San via TGF-β1 signaling suppression in rat model of COPD
玉屏风散通过抑制 TGF-β1 信号传导抑制 COPD 大鼠模型的抗炎作用
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhong-Shan Yang;Jin-Yuan Yan;Ni-Ping Han;Wei Zhou;Yu Cheng;Xiao-Mei Zhang;Ning Li;Jia-Li Yuan
  • 通讯作者:
    Jia-Li Yuan
Preparation and catalytic performance of N-[(2-Hydroxy-3-trimethylammonium) propyl] chitosan chloride /Na2SiO3 polymer-based catalyst for biodiesel production
N-[(2-羟基-3-三甲基铵)丙基]氯化壳聚糖/Na2SiO3聚合物基生物柴油催化剂的制备及催化性能
  • DOI:
    10.1016/j.renene.2015.11.036
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    BenQiao He;YiXuan Shao;JianXin Li;Yu Cheng
  • 通讯作者:
    Yu Cheng
Object tracking in the complex environment based on SIFT
基于SIFT的复杂环境目标跟踪
A Neutrophil-Inspired Supramolecular Nanogel for Magnetocaloric-Enzymatic Tandem Therapy
用于磁热酶串联疗法的中性粒细胞启发的超分子纳米凝胶
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Zhang;Jiaojiao Wu;Jingjing Wang;Xia Wang;Chu Wu;Mengwei Chen;Qing Wu;Maciej S. Lesniak;Yongli Mi;Yu Cheng;Qigang Wang
  • 通讯作者:
    Qigang Wang

Yu Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Cheng', 18)}}的其他基金

AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2122628
  • 财政年份:
    2022
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2307106
  • 财政年份:
    2022
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
CNS Core: Small: Application-Oriented Scheduling for Optimizing Information Freshness in Wireless Networks
CNS 核心:小型:面向应用的调度,用于优化无线网络中的信息新鲜度
  • 批准号:
    2008092
  • 财政年份:
    2020
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
NeTS: Small: Machine Learning Meets Wireless Network Optimization: Exploring the Latent Knowledge
NeTS:小型:机器学习遇见无线网络优化:探索潜在知识
  • 批准号:
    1816908
  • 财政年份:
    2018
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
A Fundamental Study on Energy Efficient Wireless Communication Networks: Modeling, Algorithms, and Applications
节能无线通信网络的基础研究:建模、算法和应用
  • 批准号:
    1610874
  • 财政年份:
    2016
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2016 IEEE Global Communications Conference (IEEE GLOBECOM)
2016 年 IEEE 全球通信会议 (IEEE GLOBECOM) 的 NSF 学生旅费补助
  • 批准号:
    1643335
  • 财政年份:
    2016
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Towards Reliable, Energy-Efficient, and Secure Vehicular Networks
NetS:小型:协作研究:迈向可靠、节能和安全的车辆网络
  • 批准号:
    1320736
  • 财政年份:
    2014
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Association, Regression and Diagnostic Accuracy Analyses of Competing Risks Data
竞争风险数据的关联、回归和诊断准确性分析
  • 批准号:
    1207711
  • 财政年份:
    2012
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
TC: Small: Real-Time Intrusion Detection for VoIP over IEEE 802.11 Based Wireless Networks: An Analytical Approach for Guaranteed Performance
TC:小型:基于 IEEE 802.11 的无线网络的 VoIP 实时入侵检测:保证性能的分析方法
  • 批准号:
    1117687
  • 财政年份:
    2012
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant
CAREER: Exploring the Underexplored: A Fundamental Study of Optimal Resource Allocation and Low-Complexity Algorithms in Multi-Radio Multi-Channel Wireless Networks
职业:探索未开发领域:多无线电多通道无线网络中最优资源分配和低复杂度算法的基础研究
  • 批准号:
    1053777
  • 财政年份:
    2011
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
  • 批准号:
    2239067
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
  • 批准号:
    23K14813
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
  • 批准号:
    23K03219
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CDS&E: Immersive Virtual Reality for Discovering Hidden Chemical Information and Improving Multivariate Modeling and Predication
CDS
  • 批准号:
    2305020
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Exploring and exploiting new representations for multivariate extremes
探索和利用多元极值的新表示
  • 批准号:
    EP/X010449/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Research Grant
Applications of Algebraic Geometry to Multivariate Gaussian Models
代数几何在多元高斯模型中的应用
  • 批准号:
    2306672
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant
Development of non-invasive measurement and induction of multivariate sharp-wave ripples in the human brain
开发人脑多元尖波波纹的非侵入性测量和感应
  • 批准号:
    23K14679
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Simplification of solution matrices in multivariate data analysis by integrating of sparseness and simple structure
通过稀疏性和简单结构的结合简化多元数据分析中的解矩阵
  • 批准号:
    23K16854
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multivariate analysis methods for optical imaging measurements of macroscopic inhomogeneous structures
宏观非均匀结构光学成像测量的多元分析方法
  • 批准号:
    23K03283
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了