Collaborative Research: Asymptotic Statistical Inference for High-dimensional Time Series

合作研究:高维时间序列的渐近统计推断

基本信息

  • 批准号:
    1916290
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

The information era has witnessed an explosion in the collection of high dimensional time series data across a wide range of areas, including finance, signal processing, neuroscience, meteorology, seismology, among others. For low dimensional time series, there is a well-developed estimation and inference theory. Inference theory in the high dimensional setting is of fundamental importance and has wide applications, but has been rarely studied. Researchers face a number of challenges in solving real-world problems: (i) complex dynamics of data generating systems, (ii) temporal and cross-sectional dependencies, (iii) high dimensionality and (iv) non-Gaussian distributions. The goal of this project is to develop and advance inference theory for high dimensional time series data by concerning all the above characteristics. The project will provide training to graduate students and publicly avaialble statistical packages. This project involves developing a systematic asymptotic theory for estimation and inference for high dimensional time series, including parameter estimation, construction of simultaneous confidence intervals, prediction, model selection, Granger causality test, hypothesis testing, and spectral domain estimation. To this end, a new methodology for the estimation of parameters and second-order characteristics for high dimensional time series will be proposed. New tools and concentration inequalities for the asymptotic analysis of high-dimensional time series will be developed. To perform simultaneous inference and significance testing, the PIs will investigate the very deep Gaussian approximation problem and the high dimensional central limit theorems by taking both high dimensionality and temporal and cross-sectional dependencies into account.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信息时代见证了广泛领域的高维时间序列数据收集的爆炸性增长,包括金融、信号处理、神经科学、气象学、地震学等。对于低维时间序列,有一套成熟的估计和推断理论。高维环境下的推理理论具有基础性的重要性和广泛的应用,但研究较少。研究人员在解决现实世界的问题时面临着许多挑战:(I)数据生成系统的复杂动力学,(Ii)时间和横截面相关性,(Iii)高维和(Iv)非高斯分布。本项目的目标是通过综合考虑上述特点,发展和完善高维时间序列数据的推理理论。该项目将为研究生提供培训,并向公众提供统计资料包。该项目涉及发展高维时间序列估计和推断的系统渐近理论,包括参数估计、同时可信区间的构造、预测、模型选择、格兰杰因果检验、假设检验和谱域估计。为此,将提出一种新的高维时间序列参数和二阶特征估计方法。将开发用于高维时间序列渐近分析的新工具和浓度不等式。为了进行同时推理和显著性测试,PI将调查非常深的高斯近似问题和高维中心极限定理,同时考虑到高维以及时间和横截面的依赖。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Danna Zhang其他文献

Robust Estimation of High-dimensional non-Gaussian Autoregressive Models
高维非高斯自回归模型的鲁棒估计
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linbo Liu;Danna Zhang
  • 通讯作者:
    Danna Zhang
Non identification of structural change in non stationary AR(1) models
Vascular endothelial growth factor‐modified macrophages accelerate reendothelialization and attenuate neointima formation after arterial injury in atherosclerosis‐prone mice
  • DOI:
    10.1002/jcb.28355.
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Dan Yan;Danna Zhang;Lili Lu;Hui Qui;Jun Wang
  • 通讯作者:
    Jun Wang
Fast Algorithms for Computing the Statistics of Pattern Matching
计算模式匹配统计量的快速算法
  • DOI:
    10.1109/access.2021.3105607
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Danna Zhang;Kai Jin
  • 通讯作者:
    Kai Jin
Sum-of-Max partition under a Knapsack constraint
  • DOI:
    10.1016/j.compeleceng.2022.108521
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kai Jin;Danna Zhang;Canhui Zhang
  • 通讯作者:
    Canhui Zhang

Danna Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
  • 批准号:
    2210505
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
  • 批准号:
    2210506
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Approximations for Sequential Decision Problems in Econometrics
合作研究:计量经济学中序列决策问题的渐近逼近
  • 批准号:
    2117260
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Approximations for Sequential Decision Problems in Econometrics
合作研究:计量经济学中序列决策问题的渐近逼近
  • 批准号:
    2117261
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
  • 批准号:
    2023499
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
  • 批准号:
    2023541
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Statistical Inference for High-dimensional Time Series
合作研究:高维时间序列的渐近统计推断
  • 批准号:
    1916351
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
  • 批准号:
    1855185
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
  • 批准号:
    1855439
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: A Computational Framework for Non-asymptotic Homogenization with Applications to Metamaterials
协作研究:非渐近均质化的计算框架及其在超材料中的应用
  • 批准号:
    1216927
  • 财政年份:
    2012
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了