Collaborative Research: Asymptotic Approximations for Sequential Decision Problems in Econometrics
合作研究:计量经济学中序列决策问题的渐近逼近
基本信息
- 批准号:2117260
- 负责人:
- 金额:$ 30.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Economic and social data are often collected over time. The data collection method may sometimes be adjusted to respond to lessons learnt during the data collection in earlier periods. In these situations, researchers may need to estimate policy effects, test hypotheses, or adjust experimental designs dynamically as new data become available. The estimation method will need to adjust as the data changes. There are currently no efficient methods for drawing inference from data collected in such sequential manner. This project will develop new and innovative methods for analyzing such sequential statistical problems. The project will devise methods that are easy to solve mathematically and allow researchers to properly evaluate dynamically collected data and maximize the efficiency with which the data is used to draw policy conclusions. These methods will be useful in several areas of economics, biostatistics, medicine, and other social sciences. The results of this research will improve methods of policy evaluation, hence improve the functioning of the US economy and governance.This project will develop new methods for analyzing statistical decision problem in dynamic settings. We will extend the limits of experiments framework to incorporate the informational structure in various forms of sequential data collection. The first part of the research will focus on sequential settings where the information available to the analyst is fixed or set exogenously to the collected data. The second part of the project will include settings where sequential collection of data evolves dynamically to reflect information gained from earlier portions of the data. For each of these settings, two key research outputs will be: (i) new information-adapted asymptotic representation theorems; and (ii) a new asymptotic optimality framework and findings. The results of this research will improve methods of policy evaluation, hence improve the functioning of the US economy and governance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
经济和社会数据通常是随着时间的推移而收集的。有时可以调整数据收集方法,以响应在早期数据收集过程中吸取的教训。在这些情况下,研究人员可能需要评估政策效果,检验假设,或随着新数据的出现而动态调整实验设计。估计方法需要随着数据的变化而调整。目前还没有有效的方法来从以这种顺序方式收集的数据中得出推论。这个项目将发展新的和创新的方法来分析这种顺序统计问题。该项目将设计出易于数学解决的方法,使研究人员能够正确评估动态收集的数据,并最大限度地提高数据用于得出政策结论的效率。这些方法将在经济学、生物统计学、医学和其他社会科学的几个领域有用。本文的研究成果将改进政策评估的方法,从而改善美国经济和治理的运行。这个项目将开发新的方法来分析动态环境中的统计决策问题。我们将扩展实验框架的限制,以纳入各种形式的顺序数据收集的信息结构。研究的第一部分将侧重于顺序设置,其中分析师可用的信息是固定的,或者是收集数据的外部设置。项目的第二部分将包括一些设置,在这些设置中,数据的顺序收集将动态地演变,以反映从数据的早期部分获得的信息。对于每一种设置,两个关键的研究成果将是:(i)新的信息适应渐近表示定理;(ii)一个新的渐近最优性框架和研究结果。本文的研究成果将改进政策评估的方法,从而改善美国经济和治理的运行。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keisuke Hirano其他文献
Ultra-Long Inflation in Superficial Femoral Artery Stenosis and Occluded Lesions Using Guide Liner (“Ultra SOUL”): A Case Report
- DOI:
10.1016/j.avsg.2018.08.099 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:
- 作者:
Shigemitsu Shirai;Keisuke Hirano;Kenji Makino;Yosuke Honda;Masakazu Tsutsumi;Shinsuke Mori;Yasunari Sakamoto;Norihiro Kobayashi;Motoharu Araki;Masahiro Yamawaki;Yoshiaki Ito - 通讯作者:
Yoshiaki Ito
THREE-YEAR OUTCOMES IN THE OLIVE REGISTRY: A PROSPECTIVE MULTI-CENTER STUDY IN PATIENTS WITH CLINICAL LIMB ISCHEMIA
- DOI:
10.1016/s0735-1097(15)62070-8 - 发表时间:
2015-03-17 - 期刊:
- 影响因子:
- 作者:
Osamu Iida;Masato Nakamura;Akira Miyamoto;Daizo Kawasaki;Yoshiaki Yokoi;Yoshimitsu Soga;Kan Zen;Keisuke Hirano;Nobuhiro Suematsu;Kenji Suzuki;Yoshiaki Shintani;Yusuke Miyashita;Kazushi Urasawa;Ikuro Kitano;Taketsugu Tsuchiya;Toshiro Shinke;Mitsuyoshi Takahara;Toshimitsu Hamasaki;Shinsuke Nanto;Masaaki Uematsu - 通讯作者:
Masaaki Uematsu
TCTAP A-067 The Impact of Angiographic Peri-contrast Staining After Second the Impact of Angiographic Peri-contrast Staining After Second Generation DES Implantationeneration DES Implantation
- DOI:
10.1016/j.jacc.2014.02.085 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:
- 作者:
Takahiro Tokuda;Toshiya Muramatsu;Reiko Tsukahara;Yoshiaki Ito;Hiroshi Ishimori;Keisuke Hirano;Masatsugu Nakano;Motoharu Araki;Tamon Kato;Norihiro Kobayashi;Yasunari Sakamoto;Hideyuki Takimura;Shinsuke Mori;Hiroya Takafuji;Makino Kenji - 通讯作者:
Makino Kenji
TCT-527 What are the Predictors of Wound Healing in Patients with Critical Limb Ischemia with Tissue Loss following Successful Endovascular Therapy?
- DOI:
10.1016/j.jacc.2013.08.1273 - 发表时间:
2013-10-29 - 期刊:
- 影响因子:
- 作者:
Norihiro Kobayashi;Toshiya Muramatsu;Reiko Tsukahara;Yoshiaki Ito;Hiroshi Ishimori;Keisuke Hirano;Masatsugu Nakano - 通讯作者:
Masatsugu Nakano
TCT-528 Clinical efficacy of infrapopliteal balloon angioplasty for hemodialysis patients with critical limb ischemia
- DOI:
10.1016/j.jacc.2013.08.1274 - 发表时间:
2013-10-29 - 期刊:
- 影响因子:
- 作者:
Masatsugu Nakano;Keisuke Hirano;Osamu iida;Yoshimitsu Soga;Junichi Tazaki - 通讯作者:
Junichi Tazaki
Keisuke Hirano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keisuke Hirano', 18)}}的其他基金
Collaborative Research: Applications of Asymptotic Statistical Decision Theory in Econometrics
协作研究:渐近统计决策理论在计量经济学中的应用
- 批准号:
0962488 - 财政年份:2010
- 资助金额:
$ 30.55万 - 项目类别:
Continuing Grant
CAREER: Bayesian Econometric Modeling and Nonparametric Identification
职业:贝叶斯计量经济学建模和非参数识别
- 批准号:
0226164 - 财政年份:2002
- 资助金额:
$ 30.55万 - 项目类别:
Continuing Grant
CAREER: Bayesian Econometric Modeling and Nonparametric Identification
职业:贝叶斯计量经济学建模和非参数识别
- 批准号:
9985257 - 财政年份:2000
- 资助金额:
$ 30.55万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
- 批准号:
2210505 - 财政年份:2022
- 资助金额:
$ 30.55万 - 项目类别:
Standard Grant
Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
- 批准号:
2210506 - 财政年份:2022
- 资助金额:
$ 30.55万 - 项目类别:
Standard Grant
Collaborative Research: Asymptotic Approximations for Sequential Decision Problems in Econometrics
合作研究:计量经济学中序列决策问题的渐近逼近
- 批准号:
2117261 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
- 批准号:
2023499 - 财政年份:2020
- 资助金额:
$ 30.55万 - 项目类别:
Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
- 批准号:
2023541 - 财政年份:2020
- 资助金额:
$ 30.55万 - 项目类别:
Standard Grant
Collaborative Research: Asymptotic Statistical Inference for High-dimensional Time Series
合作研究:高维时间序列的渐近统计推断
- 批准号:
1916351 - 财政年份:2019
- 资助金额:
$ 30.55万 - 项目类别:
Standard Grant
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
- 批准号:
1855185 - 财政年份:2019
- 资助金额:
$ 30.55万 - 项目类别:
Standard Grant
Collaborative Research: Asymptotic Statistical Inference for High-dimensional Time Series
合作研究:高维时间序列的渐近统计推断
- 批准号:
1916290 - 财政年份:2019
- 资助金额:
$ 30.55万 - 项目类别:
Standard Grant
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
- 批准号:
1855439 - 财政年份:2019
- 资助金额:
$ 30.55万 - 项目类别:
Standard Grant
Collaborative Research: A Computational Framework for Non-asymptotic Homogenization with Applications to Metamaterials
协作研究:非渐近均质化的计算框架及其在超材料中的应用
- 批准号:
1216927 - 财政年份:2012
- 资助金额:
$ 30.55万 - 项目类别:
Continuing Grant