Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations

合作研究:渐近几何与随机偏微分方程分析

基本信息

  • 批准号:
    1855185
  • 负责人:
  • 金额:
    $ 19.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This project is concerned with the development of a geometric/analytic theory of random fields, primarily those that arise from stochastic partial differential equations [SPDEs, for short]. Special emphasis is placed on certain SPDEs and related random fields that play a central role in various areas of pure and applied mathematics, mathematical oceanography, stochastic hydrology, geostatistics, and mathematical physics. The investigators will develop probabilistic, geometric, and analytic tools that will lead to a deeper understanding of a large family of physically- and mathematically-interesting SPDEs and related random fields. The investigators believe that these tools will have sufficient novelty to open new research areas, solve a number of long-standing open problems in the theory of SPDEs and related random fields, and also further promote their applicability. In addition, the activities include a sustained program to train graduate students and postdoctoral scholars, and to develop their careers in the mathematical and statistical sciences.It is both significant and challenging to characterize the fine local and asymptotic structure of SPDEs and related random fields. In their past investigations, the investigators have established a series of results on the asymptotic behavior, intermittency, and macroscopic-scale multifractal properties of the solutions of SPDEs and related random fields, developed potential theories for additive Levy processes and the Brownian sheet, and used them to resolve several outstanding open problems in Levy processes, the Brownian sheet, and the theory of parabolic stochastic partial differential equations. The investigators have developed ideas, based on probability theory and geometric measure theory, for the analysis of non-Markovian Gaussian and stable random fields. They have also introduced renewal-theoretic and coupling techniques for the asymptotic analysis of solutions to a large class of nonlinear SPDEs. They plan to continue their investigation of precise quantitative connections between SPDEs, random fields, potential theory, and the geometry of random fractals. They believe that further pursuit of these connections will ultimately yield novel insights into the structure of SPDEs,large-scale physical multifractals, and related random fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目与随机场的几何/分析理论的发展有关,这主要是由随机偏微分方程(简称SPDE)引起的。特别重点是在纯数学和应用数学,数学海洋学,随机水文学,地统计学和数学物理学的各个领域中起着核心作用的某些SPD和相关随机领域。研究人员将开发概率,几何和分析工具,从而更深入地了解一个大型的身体和数学杂志的SPDES和相关的随机领域。研究人员认为,这些工具将具有足够的新颖性来开放新的研究领域,解决了SPDE和相关随机领域的许多长期开放问题,并进一步促进其适用性。此外,这些活动包括一项持续的计划,以培训研究生和博士后学者,并在数学和统计科学中发展其职业。它表征SPDES的局部局部和渐近结构以及相关随机领域的良好本地和渐近结构既重要又具有挑战性。 In their past investigations, the investigators have established a series of results on the asymptotic behavior, intermittency, and macroscopic-scale multifractal properties of the solutions of SPDEs and related random fields, developed potential theories for additive Levy processes and the Brownian sheet, and used them to resolve several outstanding open problems in Levy processes, the Brownian sheet, and the theory of parabolic stochastic partial differential equations.研究人员根据概率理论和几何测量理论开发了思想,用于分析非马克维亚高斯和稳定的随机领域。他们还引入了更新的理论和耦合技术,以对大型非线性SPDE的溶液进行渐近分析。他们计划继续研究SPDE,随机场,潜在理论和随机分形的几何形状之间的精确定量连接。他们认为,进一步追求这些联系将最终产生对SPDES结构,大规模的物理多型和相关随机领域的结构的新颖见解。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响标准通过评估来进行评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yimin Xiao其他文献

Propagation of singularities for the stochastic wave equation
随机波动方程的奇点传播
Lower functions and Chung's LILs of the generalized fractional Brownian motion
广义分数布朗运动的下限函数和 Chung 的 LIL
Calculation of transient heat transfer through the envelope of an underground cavern using Z-transfer coefficient method
使用 Z 传递系数法计算地下洞穴围护结构的瞬态传热
  • DOI:
    10.1016/j.enbuild.2012.01.040
  • 发表时间:
    2012-05
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yimin Xiao;Xichen Liu;Rongrong Zhang
  • 通讯作者:
    Rongrong Zhang
Hausdorff measure of the graph of fractional Brownian motion
On collision of multiple eigenvalues for matrix-valued Gaussian processes
矩阵值高斯过程的多个特征值的碰撞
  • DOI:
    10.1016/j.jmaa.2021.125261
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jian Song;Yimin Xiao;Wangjun Yuan
  • 通讯作者:
    Wangjun Yuan

Yimin Xiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yimin Xiao', 18)}}的其他基金

Conference: Workshop on Stochastic Analysis, Random Fields, and Applications
会议:随机分析、随机场和应用研讨会
  • 批准号:
    2309847
  • 财政年份:
    2023
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
  • 批准号:
    2153846
  • 财政年份:
    2022
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Continuing Grant
Seminar on Stochastic Processes (SSP) 2020
随机过程研讨会(SSP)2020
  • 批准号:
    1951535
  • 财政年份:
    2020
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Fractals, Multifractals, and Stochastic Partial Differential Equations
合作研究:分形、多重分形和随机偏微分方程
  • 批准号:
    1607089
  • 财政年份:
    2016
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
Estimation, Prediction, and Extremes of Multivariate Random Fields
多元随机场的估计、预测和极值
  • 批准号:
    1612885
  • 财政年份:
    2016
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
Extreme Value Theory and Fixed-Domain Asymptotics of Multivariate Random Fields
多元随机场的极值理论和定域渐近
  • 批准号:
    1309856
  • 财政年份:
    2013
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Analysis of Stochastic Partial Differential Equations
NSF/CBMS 数学科学区域会议 - 随机偏微分方程分析
  • 批准号:
    1241389
  • 财政年份:
    2012
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
  • 批准号:
    2210505
  • 财政年份:
    2022
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
  • 批准号:
    2210506
  • 财政年份:
    2022
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Approximations for Sequential Decision Problems in Econometrics
合作研究:计量经济学中序列决策问题的渐近逼近
  • 批准号:
    2117260
  • 财政年份:
    2021
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Approximations for Sequential Decision Problems in Econometrics
合作研究:计量经济学中序列决策问题的渐近逼近
  • 批准号:
    2117261
  • 财政年份:
    2021
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
  • 批准号:
    2023499
  • 财政年份:
    2020
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了