SHAPE: Dynamic and Reconfigurable Multiband and Ultra-Wideband RF Spectral Tailoring

SHAPE:动态且可重新配置的多频段和超宽带射频频谱定制

基本信息

  • 批准号:
    1917043
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Multiband radio frequency (RF) systems are essential for commercial, defense, and everyday consumer uses. Further multiband RF resources have recently been released for new applications such as the 5G system. Although these new developments could lead to useful new applications being supported and more people able to enjoy the associated advantages, we can only realize these benefits if we can ensure high-quality transmission performance. This outcome is challenging to achieve because the bandwidth of multiband RF signals can be several gigahertz wide, and current electronic technologies are not capable of dynamically manipulating such a wide spectrum. This research aims to overcome this challenge by making use of photonics, an alternative signal processing method that has much wider bandwidth and faster speed than its counterpart in electronics. With the proposed photonics techniques, the RF signal is first converted to an optical signal, which can then be processed almost instantaneously and dynamically. This research focuses on the dynamic and precise tailoring and equalizing of RF spectral response over ultra-wide/multiple frequency bands. We will also carry out a comprehensive education plan closely related to the research that includes developing mobile apps for learning fiber optics, visiting local elementary and high schools, developing undergraduate freshman seminars and cross-disciplinary courses, and providing research experiences for high school and undergraduate students. This research will strengthen vital wireless services in the United States, including smart home system control, augmented reality learning, and surveillance and reconnaissance efforts.While new RF resources from MHz to tens of GHz have been made available to emerging wireless technologies such as the 5G system, the inability to dynamically and precisely manipulate the whole available RF spectrum hinders the performance of the associated multi-/wideband systems. The mission of this research is to use photonics to enable effective and precise manipulation of wide radio spectrum of tens of GHz. Two closely related research themes are proposed: (i) Developing a photonics-based radio frequency spectrum shaper that can achieve tens of GHz bandwidth of continuous spectral tailoring capability with greater than 50-dB dynamic amplitude compensation, and (ii) Developing a radio frequency photonic subsystem to enable independent multiband RF spectral shaping and chirp control. The radio frequency spectral shaper exploits the multi-point spectral control capabilities of a uniquely designed RF multiband filter, the heterogeneous spectral property control algorithm, and the instantaneous response of existing optical devices to achieve dynamic radio frequency spectrum tailoring from low- to high-frequency bands. The dynamic spectral manipulation of radio frequency spectrum enables independent control of frequency, amplitude, spectral shape, bandwidth, and group delay slope at each spectral control point. This proposal presents a comprehensive, interdisciplinary, and innovative approach to solve the challenging wideband radio frequency channel response problem while offering a solution to individually and precisely tailor the wideband and multiband radio frequency spectrum. The proposed research involves a close coupling of system design and experimental validation, and thus will yield laboratory prototypes to demonstrate more effective operation of wideband and multiband radio frequency systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多频段射频(RF)系统对于商业、国防和日常消费用途至关重要。最近已经为诸如5G系统的新应用释放了更多的多频带RF资源。虽然这些新的发展可能会导致支持有用的新应用程序,更多的人能够享受相关的优势,但我们只有在确保高质量的传输性能的情况下才能实现这些好处。实现这一结果是具有挑战性的,因为多频带RF信号的带宽可以是几千兆赫宽,并且当前的电子技术不能够动态地操纵这样宽的频谱。本研究旨在通过利用光子学来克服这一挑战,光子学是一种替代信号处理方法,具有比电子学中的对应方法更宽的带宽和更快的速度。利用所提出的光子学技术,RF信号首先被转换为光信号,然后可以几乎瞬时和动态地处理光信号。本研究的重点是在超宽/多个频带上的RF频谱响应的动态和精确的定制和均衡。我们还将实施与研究密切相关的综合教育计划,包括开发用于学习光纤的移动的应用程序,访问当地小学和高中,开发本科新生研讨会和跨学科课程,并为高中和本科生提供研究经验。这项研究将加强美国重要的无线服务,包括智能家居系统控制,增强现实学习以及监视和侦察工作。虽然从MHz到数十GHz的新RF资源已可用于新兴无线技术,如5G系统,不能动态和精确地操纵整个可用RF频谱阻碍了相关多/宽带系统的性能。这项研究的使命是利用光子学实现对数十GHz宽无线电频谱的有效和精确操纵。提出了两个密切相关的研究主题:(i)开发基于光子学的射频频谱整形器,可以实现数十GHz带宽的连续频谱剪裁能力,具有大于50 dB的动态幅度补偿,以及(ii)开发射频光子子系统,以实现独立的多频带RF频谱整形和啁啾控制。射频频谱整形器利用独特设计的RF多频带滤波器的多点频谱控制能力、异构频谱特性控制算法以及现有光学器件的瞬时响应,以实现从低频带到高频带的动态射频频谱定制。无线电频谱的动态频谱操纵使得能够独立地控制每个频谱控制点处的频率、幅度、频谱形状、带宽和群延迟斜率。该提案提出了一种全面、跨学科和创新的方法,以解决具有挑战性的宽带射频信道响应问题,同时提供一种解决方案,以单独和精确地定制宽带和多频带射频频谱。拟议的研究涉及系统设计和实验验证的紧密结合,因此将产生实验室原型,以证明宽带和多频段射频系统的更有效的操作。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toy box optics: bringing optical technologies home and to schools
玩具盒光学:将光学技术带入家庭和学校
  • DOI:
    10.1117/12.2672816
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fok, Mable P.;Binder, Steven
  • 通讯作者:
    Binder, Steven
Bioinspired Photonics: Camouflage Strategies from Marine Hatchetfish for Optical RF Steganography
仿生光子学:海洋斧鱼的光学射频隐写术伪装策略
Biomimicry in Microwave Photonic and Fiber Optic Sensors Embedded Soft Robotics
微波光子和光纤传感器中的仿生嵌入式软机器人
Ultrafast and Wideband Microwave Photonic Frequency-Hopping Systems: A Review
  • DOI:
    10.3390/app10020521
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qidi Liu;M. Fok
  • 通讯作者:
    Qidi Liu;M. Fok
Adaptive Microwave Photonic Spectral Shaper for RF Response Tailoring
用于射频响应定制的自适应微波光子光谱整形器
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mable Fok其他文献

Mable Fok的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mable Fok', 18)}}的其他基金

CAREER:Optically-enabled Scanning and Utilization of Radio Spectrum Opportunities (OSCARS)
职业:无线电频谱机会的光学扫描和利用(OSCARS)
  • 批准号:
    1653525
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Bio-inspired Fiber-Optics System based on Crayfish Escape Response for Ultrafast Adaptive Sensing
基于小龙虾逃逸响应的仿生光纤系统,用于超快自适应传感
  • 批准号:
    1400100
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
BRIGE: LEON: Learning in Optical Neuron
BRIGE:LEON:视神经元的学习
  • 批准号:
    1342177
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

ERI: AI-Enhanced Dynamic Interference Suppression in Cognitive Sensing with Reconfigurable Sparse Arrays
ERI:利用可重构稀疏阵列在认知传感中进行人工智能增强型动态干扰抑制
  • 批准号:
    2347220
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Reconfigurable Dynamic Metamaterials Interacting with Flowing Fluids
职业:可重构动态超材料与流动流体相互作用
  • 批准号:
    2239841
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Optical circuit switched time sensitive network architecture for high-speed passive optical networks and next generation ultra-dynamic and reconfigurable central office environments
用于高速无源光网络和下一代超动态和可重构中心局环境的光电路交换时间敏感网络架构
  • 批准号:
    10047215
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
(DYNAMOS): Dynamic and reconfigurable data centre networks with modular optical subsystems
(DYNAMOS):具有模块化光学子系统的动态且可重新配置的数据中心网络
  • 批准号:
    10038802
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
CAREER: Large-scale Dynamic Reconfigurable Networks
职业:大规模动态可重构网络
  • 批准号:
    2144766
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Metamaterial-based reconfigurable antennas with dynamic radiation pattern functionality
具有动态辐射方向图功能的基于超材料的可重构天线
  • 批准号:
    556428-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alliance Grants
ERI: Exploiting Dynamic Origami for Reconfigurable and Versatile Control of Acoustic Waves
ERI:利用动态折纸实现声波的可重构和多功能控制
  • 批准号:
    2137749
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Metamaterial-based reconfigurable antennas with dynamic radiation pattern functionality
具有动态辐射方向图功能的基于超材料的可重构天线
  • 批准号:
    556428-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Alliance Grants
Metamaterial-based reconfigurable antennas with dynamic radiation pattern functionality
具有动态辐射方向图功能的基于超材料的可重构天线
  • 批准号:
    556428-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Alliance Grants
Dynamic management of reconfigurable industry 4.0 real-time communication networks using Software-defined infrastructure (DynSDN) (T03#)
使用软件定义基础设施 (DynSDN) 动态管理可重构工业 4.0 实时通信网络 (T03
  • 批准号:
    441647756
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative Research Centres (Transfer Project)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了