CAREER: Reconfigurable Dynamic Metamaterials Interacting with Flowing Fluids

职业:可重构动态超材料与流动流体相互作用

基本信息

  • 批准号:
    2239841
  • 负责人:
  • 金额:
    $ 70.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

The ability to engineer reconfigurable metamaterials that efficiently interact with flowing fluids can revolutionize the design and operation of a wide range of medical and robotic devices, from self-reconfigurable cardiovascular prostheses, to passively controlled soft valves and deformable soft robots. These devices often operate in high-energy content environments, with unsteady flowing fluids, but no technology exists to enable them to harvest and redirect this energy to perform distributed actuation efficiently and autonomously, without relying on external sources of energy. A compelling paradigm for achieving such vision is to use multistable metamaterials that store and selectively release energy through nonlinear transition waves -- these large amplitude waves sequentially switch elements from one stable state to another. This Faculty Early Career Development (CAREER) grant will support research to build the analytical and experimental foundations for flow-responsive multistable metamaterials that manifest tunable dynamic properties and perform desirable tasks by harnessing fluid-structure interactions. These metamaterials will form building blocks for designing dynamic systems that sustain targeted functionalities under fluidic stimuli. This CAREER project will carry out an ambitious plan for integrating research and education and for developing innovative strategies for public outreach that showcase the societal benefits of the field of dynamic metamaterials and spark interest among high school students. By combining mechanical metamaterials and fluid flow environments, this research will show how fluid-structure interactions and transition waves can be leveraged to efficiently achieve desired dynamic behaviors in both dynamic systems and flow fields. With a combination of analytical, numerical, and experimental methods, fluid-metastructure interactions will be used as a twofold “dynamic knob” to (1) manipulate shape reconfigurations in multistable metamaterials for actuation purposes and to (2) control fluid fluxes through transition wavefronts in metamaterials. Reprogrammable dynamic properties and self-regulating flow capabilities will be coupled to passively obtain rigidity on demand and distributed actuation. This research will represent a milestone towards the development of future engineered structures with unprecedented tunable dynamic properties and flow-induced shape transformations. The resulting adaptive metastructures will significantly enhance the field of self-actuating metamaterials with distributed intelligent capabilities. The results of this research will be a leap forward in the design of self-reconfigurable cardiovascular implants, swimming meta-robots, and passive flow-rate control systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
设计可与流动流体有效相互作用的可重构超材料的能力可以彻底改变各种医疗和机器人设备的设计和操作,从自重构心血管假体到被动控制的软阀和可变形软机器人。这些设备通常在高能量含量的环境中操作,具有不稳定的流动流体,但是不存在使它们能够在不依赖于外部能量源的情况下收集和重定向该能量以高效且自主地执行分布式致动的技术。实现这种愿景的一个令人信服的范例是使用多稳态超材料,通过非线性过渡波存储和选择性释放能量-这些大振幅波顺序地将元件从一个稳定状态切换到另一个稳定状态。该学院早期职业发展(CAREER)补助金将支持研究,以建立流动响应多稳态超材料的分析和实验基础,这些材料表现出可调的动态特性,并通过利用流体-结构相互作用执行理想的任务。这些超材料将形成用于设计动态系统的构建块,该动态系统在流体刺激下维持目标功能。这个职业生涯项目将实施一项雄心勃勃的计划,将研究和教育相结合,并为公众宣传制定创新战略,展示动态超材料领域的社会效益,并激发高中生的兴趣。通过将机械超材料和流体流动环境相结合,这项研究将展示如何利用流体-结构相互作用和过渡波来有效地实现动态系统和流场中所需的动态行为。结合分析,数值和实验方法,流体-超结构相互作用将被用作双重“动态旋钮”,以(1)操纵多稳态超材料中的形状重新配置用于驱动目的,以及(2)通过超材料中的过渡波前控制流体通量。可重新编程的动态特性和自调节流量的能力将被耦合到被动地获得刚性的需求和分布式驱动。这项研究将是未来工程结构发展的一个里程碑,具有前所未有的可调动态特性和流动诱导的形状转换。由此产生的自适应元结构将显着增强具有分布式智能能力的自致动超材料领域。该研究成果将是自重构心血管植入物、游泳元机器人和被动流速控制系统设计的一个飞跃。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eleonora Tubaldi其他文献

Geometric determinants of sinterless, low-temperature-processed 3D-nanoprinted glass
无烧结低温处理 3D 纳米印刷玻璃的几何决定因素
  • DOI:
    10.1038/s41378-025-00983-7
  • 发表时间:
    2025-07-17
  • 期刊:
  • 影响因子:
    9.900
  • 作者:
    Adira Colton;Ryan N. Halli;M. Rho Ma;Tejaswi Nori;Lucas K. Muller;Kieran J. Barvenik;Mahima Srivastava;Bibek Ramdam;Sunandita Sarker;Eleonora Tubaldi;Peter Kofinas;Kinneret Rand-Yadin;Ryan D. Sochol
  • 通讯作者:
    Ryan D. Sochol
Investigating the role of thrombosis and false lumen orbital orientation in the hemodynamics of Type B aortic dissection
研究血栓形成和假腔轨道方向在 B 型主动脉夹层血流动力学中的作用
  • DOI:
    10.1038/s41598-024-78348-9
  • 发表时间:
    2024-11-09
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Joseph C. E. Messou;Kelly Yeung;Eric Sudbrook;Jackie Zhang;Shahab Toursavadkohi;Areck A. Ucuzian;Eleonora Tubaldi
  • 通讯作者:
    Eleonora Tubaldi

Eleonora Tubaldi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ERI: AI-Enhanced Dynamic Interference Suppression in Cognitive Sensing with Reconfigurable Sparse Arrays
ERI:利用可重构稀疏阵列在认知传感中进行人工智能增强型动态干扰抑制
  • 批准号:
    2347220
  • 财政年份:
    2024
  • 资助金额:
    $ 70.22万
  • 项目类别:
    Standard Grant
Optical circuit switched time sensitive network architecture for high-speed passive optical networks and next generation ultra-dynamic and reconfigurable central office environments
用于高速无源光网络和下一代超动态和可重构中心局环境的光电路交换时间敏感网络架构
  • 批准号:
    10047215
  • 财政年份:
    2022
  • 资助金额:
    $ 70.22万
  • 项目类别:
    EU-Funded
(DYNAMOS): Dynamic and reconfigurable data centre networks with modular optical subsystems
(DYNAMOS):具有模块化光学子系统的动态且可重新配置的数据中心网络
  • 批准号:
    10038802
  • 财政年份:
    2022
  • 资助金额:
    $ 70.22万
  • 项目类别:
    EU-Funded
CAREER: Large-scale Dynamic Reconfigurable Networks
职业:大规模动态可重构网络
  • 批准号:
    2144766
  • 财政年份:
    2022
  • 资助金额:
    $ 70.22万
  • 项目类别:
    Continuing Grant
Metamaterial-based reconfigurable antennas with dynamic radiation pattern functionality
具有动态辐射方向图功能的基于超材料的可重构天线
  • 批准号:
    556428-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 70.22万
  • 项目类别:
    Alliance Grants
ERI: Exploiting Dynamic Origami for Reconfigurable and Versatile Control of Acoustic Waves
ERI:利用动态折纸实现声波的可重构和多功能控制
  • 批准号:
    2137749
  • 财政年份:
    2022
  • 资助金额:
    $ 70.22万
  • 项目类别:
    Standard Grant
Metamaterial-based reconfigurable antennas with dynamic radiation pattern functionality
具有动态辐射方向图功能的基于超材料的可重构天线
  • 批准号:
    556428-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 70.22万
  • 项目类别:
    Alliance Grants
Metamaterial-based reconfigurable antennas with dynamic radiation pattern functionality
具有动态辐射方向图功能的基于超材料的可重构天线
  • 批准号:
    556428-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 70.22万
  • 项目类别:
    Alliance Grants
Dynamic management of reconfigurable industry 4.0 real-time communication networks using Software-defined infrastructure (DynSDN) (T03#)
使用软件定义基础设施 (DynSDN) 动态管理可重构工业 4.0 实时通信网络 (T03
  • 批准号:
    441647756
  • 财政年份:
    2020
  • 资助金额:
    $ 70.22万
  • 项目类别:
    Collaborative Research Centres (Transfer Project)
SHAPE: Dynamic and Reconfigurable Multiband and Ultra-Wideband RF Spectral Tailoring
SHAPE:动态且可重新配置的多频段和超宽带射频频谱定制
  • 批准号:
    1917043
  • 财政年份:
    2019
  • 资助金额:
    $ 70.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了