CAREER: Large-scale Dynamic Reconfigurable Networks
职业:大规模动态可重构网络
基本信息
- 批准号:2144766
- 负责人:
- 金额:$ 57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Due to society’s ever-increasing dependency on online services, reliable working of the underlying communication networks is of paramount importance. For modern online services, emerging workloads (such as remote video calls, augmented reality, machine learning, and health care) depend highly on the underlying network’s response. However, the design of today’s network infrastructures still treats the physical layer of networks as a static black box with minimal reconfigurability. This project seeks to develop new paradigms for large-scale dynamic reconfigurable networks that are applicable to datacenter networks and software-defined private wide area networks to improve service delivery. The core mission of the project is to make physical layer reconfigurability an intrinsic part of future networks. The project focuses on high-impact use-cases and applications to develop novel solutions for reconfigurable networks by leveraging optical technologies. To make large-scale reconfigurable networks a reality, this proposal tackles the foundational challenges of high-performance reconfigurable systems, including: (1) A set of algorithmic and system design techniques to co-optimize the network topology jointly with the parallelization strategy of emerging distributed machine learning jobs in datacenter networks. (2) A set of optimization and learning-based techniques to build practical cross-layer solutions for reconfigurable software-defined private wide-area networks while providing guaranteed performance. (3) Techniques to balance algorithmic and engineering foundations for reconfigurable systems. Deploying reconfigurable networks will enable users around the world to have access to reliable and fast online services. As a result, this project has the potential of high industry impact. From an educational perspective, the project will develop a new graduate-level course on Systems for Machine Learning and Machine Learning for Systems. This emerging area at the intersection of machine learning and optical systems is driven by the explosive growth of diverse applications of artificial intelligence and the complexity of large-scale systems. This project will develop a variety of simulated and emulated environments with a focus on machine learning workloads and techniques which will be accessible to a large community of students and researchers who may not have expertise in these areas.The data generated through the work in this project will consist of papers, source code, and benchmarks and will be released at the following website: http://reconfignets.csail.mit.edu/ Data will be retained for at least three years beyond the award period.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。由于社会对在线服务的依赖日益增加,底层通信网络的可靠工作至关重要。对于现代在线服务,新兴的工作负载(如远程视频通话、增强现实、机器学习和医疗保健)高度依赖于底层网络的响应。 然而,当今网络基础设施的设计仍然将网络的物理层视为具有最小可重新配置性的静态黑盒。该项目旨在开发适用于数据中心网络和软件定义的专用广域网的大规模动态可重构网络的新范例,以改善服务交付。该项目的核心使命是使物理层可重构性成为未来网络的固有组成部分。该项目专注于高影响力的用例和应用,通过利用光学技术为可重构网络开发新的解决方案。为了使大规模可重构网络成为现实,该提案解决了高性能可重构系统的基本挑战,包括:(1)一组算法和系统设计技术,以协同优化网络拓扑结构,以及数据中心网络中新兴的分布式机器学习任务的并行化策略。(2)一套基于优化和学习的技术,可为可重构软件定义专用广域网构建实用的跨层解决方案,同时提供有保证的性能。(3)平衡可重构系统的算法和工程基础的技术。部署可重新配置的网络将使世界各地的用户能够获得可靠和快速的在线服务。因此,该项目具有很大的行业影响潜力。从教育的角度来看,该项目将开发一个新的研究生水平的机器学习系统和机器学习系统。这个机器学习和光学系统交叉的新兴领域是由人工智能的各种应用和大规模系统的复杂性的爆炸性增长所驱动的。该项目将开发各种各样的模拟和仿真环境,重点是机器学习工作负载和技术,这些工作负载和技术将被大量的学生和研究人员访问,他们可能不具备这些领域的专业知识。通过该项目的工作产生的数据将包括论文,源代码和基准测试,并将在以下网站发布:http://reconfignets.csail.mit.edu/ 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manya Ghobadi其他文献
Manya Ghobadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manya Ghobadi', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: A Stateful Switch Architecture for In-Network Compute
合作研究:CNS Core:Medium:用于网内计算的有状态交换机架构
- 批准号:
2211382 - 财政年份:2022
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Spatial Multi-Tenant Neural Acceleration for Next Generation Datacenters
合作研究:SHF:中:下一代数据中心的空间多租户神经加速
- 批准号:
2107244 - 财政年份:2021
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
ASCENT: Collaborative Research: Scaling Distributed AI Systems based on Universal Optical I/O
ASCENT:协作研究:基于通用光学 I/O 扩展分布式人工智能系统
- 批准号:
2023468 - 财政年份:2020
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Principled Framework for Workload Distribution Techniques in Large-Scale Networks
合作研究:CNS 核心:小型:大规模网络中工作负载分配技术的原则框架
- 批准号:
2008624 - 财政年份:2020
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
CAREER: Large-Scale Exploration and Interpretation of Consumer-Oriented Legal Documents
职业:面向消费者的法律文件的大规模探索和解读
- 批准号:
2237574 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
- 批准号:
2238096 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant