Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
基本信息
- 批准号:1917852
- 负责人:
- 金额:$ 80.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In almost every field of science, it is now possible to capture large amounts of data. This has led machine learning to play an increasingly important role in scientific discovery, for example sifting through large amounts of data to identify interesting events. But modern machine learning techniques are less well suited for the critical tasks of devising hypotheses consistent with the data or imagining new experiments to test those hypotheses. The goal of this Expeditions project is to develop new learning techniques that can help automate this process of generating scientific theories from data. In order to ground this research in real applications, the project focuses on four domains where these techniques can have the most significant impact: organic chemistry, RNA splicing, cognitive and behavioral science, and computing systems. Machine learning is already demonstrating value in all of these domains, including predicting properties of organic compounds, recognizing complex social activities, and modeling the performance of computer systems. However, the proposed techniques could have a transformative impact in all of these domains by helping scientists gain a deeper understanding of the processes that give rise to their data. This deeper understanding could lead to important contributions ranging from more efficient drug discovery to improved teaching methods grounded on a better understanding of cognition. To realize this vision, the project will develop new methods for learning neurosymbolic models that combine neural elements capable of identifying complex patterns in data with symbolic constructs that are able to represent higher level concepts. The approach is based on the observation that programming languages provide a uniquely expressive formalism to describe complex models. The aim is therefore to develop learning techniques that can produce models that look more like the models that scientists already write by hand in code. These neurosymbolic techniques will more easily incorporate prior knowledge about the phenomena being modeled, and produce interpretable models that can be analyzed to devise new experiments or to infer causal relations. By developing these techniques and building them into tools that can be used by scientists in a variety of fields, this project has the potential to revolutionize the way scientific knowledge is derived from data. More broadly, these new techniques will be useful in any setting that requires learning more interpretable models with strong requirements on their desired behavior.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在几乎所有的科学领域,现在都可以捕获大量的数据。这导致机器学习在科学发现中发挥着越来越重要的作用,例如筛选大量数据以识别有趣的事件。但现代机器学习技术不太适合设计与数据一致的假设或想象新的实验来测试这些假设的关键任务。这个探险项目的目标是开发新的学习技术,帮助自动化从数据中生成科学理论的过程。为了使这项研究在真实的应用中扎根,该项目重点关注这些技术可能产生最重大影响的四个领域:有机化学,RNA剪接,认知和行为科学以及计算系统。机器学习已经在所有这些领域展示了价值,包括预测有机化合物的性质,识别复杂的社会活动,以及对计算机系统的性能进行建模。然而,所提出的技术可以通过帮助科学家更深入地了解产生数据的过程,在所有这些领域产生变革性的影响。这种更深入的理解可能会带来重要的贡献,从更有效的药物发现到基于更好地理解认知的改进教学方法。为了实现这一愿景,该项目将开发学习神经符号模型的新方法,该模型将联合收割机神经元素与能够表示更高级别概念的符号结构相结合,这些神经元素能够识别数据中的复杂模式。该方法是基于观察,编程语言提供了一个独特的表达形式主义来描述复杂的模型。因此,我们的目标是开发学习技术,可以生成看起来更像科学家已经用代码手工编写的模型的模型。这些神经符号技术将更容易地结合关于被建模现象的先验知识,并产生可解释的模型,可以分析这些模型以设计新的实验或推断因果关系。通过开发这些技术并将其构建为可供科学家在各个领域使用的工具,该项目有可能彻底改变从数据中获取科学知识的方式。更广泛地说,这些新技术将在任何需要学习更多可解释模型的环境中非常有用,这些模型对它们所期望的行为有很强的要求。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Counterfactual Explanations for Natural Language Interfaces
自然语言界面的反事实解释
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tolkachev, George;Mell, Stephen;Zdancewic, Stevve;Bastani, Osbert
- 通讯作者:Bastani, Osbert
Offline Goal-Conditioned Reinforcement Learning via f-Advantage Regression
通过 f-Advantage 回归进行离线目标条件强化学习
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ma, Yecheng Jason;Yan, Jason;Jayaraman, Dinesh;Bastani, Osbert
- 通讯作者:Bastani, Osbert
Program Synthesis Guided Reinforcement Learning for Partially Observed Environments
部分观察环境的程序综合引导强化学习
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Yang, Yichen D.;Inala, Jeevana P.;Bastani, Osbert;Pu, Yewen;Solar-Lezama, Armando;Rinard, Martin
- 通讯作者:Rinard, Martin
Neurosymbolic Transformers for Multi-Agent Communication
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:J. Inala;Yichen Yang;James Paulos;Yewen Pu;O. Bastani;Vijay R. Kumar;M. Rinard;Armando Solar-Lezama
- 通讯作者:J. Inala;Yichen Yang;James Paulos;Yewen Pu;O. Bastani;Vijay R. Kumar;M. Rinard;Armando Solar-Lezama
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning
- DOI:10.1609/aaai.v36i5.20478
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Yecheng Jason Ma;Andrew Shen;O. Bastani;Dinesh Jayaraman
- 通讯作者:Yecheng Jason Ma;Andrew Shen;O. Bastani;Dinesh Jayaraman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Osbert Bastani其他文献
SPARLING: Learning Latent Representations with Extremely Sparse Activations
SPARLING:通过极其稀疏的激活学习潜在表示
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kavi Gupta;Osbert Bastani;Armando Solar-Lezama - 通讯作者:
Armando Solar-Lezama
Osbert Bastani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Osbert Bastani', 18)}}的其他基金
CAREER: Formal Guarantees for Neurosymbolic Programs via Conformal Prediction
职业:通过保形预测对神经符号程序提供正式保证
- 批准号:
2338777 - 财政年份:2024
- 资助金额:
$ 80.77万 - 项目类别:
Continuing Grant
SHF: Small: Inferring Specifications for Blackbox Code
SHF:小:推断黑盒代码规范
- 批准号:
1910769 - 财政年份:2019
- 资助金额:
$ 80.77万 - 项目类别:
Standard Grant
相似海外基金
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
2151597 - 财政年份:2021
- 资助金额:
$ 80.77万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918839 - 财政年份:2020
- 资助金额:
$ 80.77万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918614 - 财政年份:2020
- 资助金额:
$ 80.77万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918626 - 财政年份:2020
- 资助金额:
$ 80.77万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918651 - 财政年份:2020
- 资助金额:
$ 80.77万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918784 - 财政年份:2020
- 资助金额:
$ 80.77万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918771 - 财政年份:2020
- 资助金额:
$ 80.77万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918889 - 财政年份:2020
- 资助金额:
$ 80.77万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918770 - 财政年份:2020
- 资助金额:
$ 80.77万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918865 - 财政年份:2020
- 资助金额:
$ 80.77万 - 项目类别:
Continuing Grant