Expeditions: Collaborative Research: Understanding the World Through Code

探险:合作研究:通过代码了解世界

基本信息

  • 批准号:
    1918865
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

In almost every field of science, it is now possible to capture large amounts of data. This has led machine learning to play an increasingly important role in scientific discovery, for example sifting through large amounts of data to identify interesting events. But modern machine learning techniques are less well suited for the critical tasks of devising hypotheses consistent with the data or imagining new experiments to test those hypotheses. The goal of this Expeditions project is to develop new learning techniques that can help automate this process of generating scientific theories from data. In order to ground this research in real applications, the project focuses on four domains where these techniques can have the most significant impact: organic chemistry, RNA splicing, cognitive and behavioral science, and computing systems. Machine learning is already demonstrating value in all of these domains, including predicting properties of organic compounds, recognizing complex social activities, and modeling the performance of computer systems. However, the proposed techniques could have a transformative impact in all of these domains by helping scientists gain a deeper understanding of the processes that give rise to their data. This deeper understanding could lead to important contributions ranging from more efficient drug discovery to improved teaching methods grounded on a better understanding of cognition. To realize this vision, the project will develop new methods for learning neurosymbolic models that combine neural elements capable of identifying complex patterns in data with symbolic constructs that are able to represent higher level concepts. The approach is based on the observation that programming languages provide a uniquely expressive formalism to describe complex models. The aim is therefore to develop learning techniques that can produce models that look more like the models that scientists already write by hand in code. These neurosymbolic techniques will more easily incorporate prior knowledge about the phenomena being modeled, and produce interpretable models that can be analyzed to devise new experiments or to infer causal relations. By developing these techniques and building them into tools that can be used by scientists in a variety of fields, this project has the potential to revolutionize the way scientific knowledge is derived from data. More broadly, these new techniques will be useful in any setting that requires learning more interpretable models with strong requirements on their desired behavior.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在几乎所有的科学领域,现在都可以捕获大量的数据。这导致机器学习在科学发现中发挥着越来越重要的作用,例如筛选大量数据以识别有趣的事件。但现代机器学习技术不太适合设计与数据一致的假设或想象新实验来测试这些假设的关键任务。这个探险项目的目标是开发新的学习技术,帮助自动化从数据中生成科学理论的过程。为了使这项研究在真实的应用中扎根,该项目重点关注这些技术可能产生最重大影响的四个领域:有机化学,RNA剪接,认知和行为科学以及计算系统。机器学习已经在所有这些领域展示了价值,包括预测有机化合物的性质,识别复杂的社会活动,以及对计算机系统的性能进行建模。然而,所提出的技术可以通过帮助科学家更深入地了解产生数据的过程,在所有这些领域产生变革性的影响。这种更深入的理解可能会带来重要的贡献,从更有效的药物发现到基于更好地理解认知的改进教学方法。为了实现这一愿景,该项目将开发学习神经符号模型的新方法,该模型将联合收割机神经元素与能够表示更高级别概念的符号结构相结合,这些神经元素能够识别数据中的复杂模式。该方法是基于观察,编程语言提供了一个独特的表达形式主义来描述复杂的模型。因此,我们的目标是开发学习技术,可以生成看起来更像科学家已经用代码手工编写的模型的模型。这些神经符号技术将更容易地结合关于被建模现象的先验知识,并产生可解释的模型,可以分析这些模型以设计新的实验或推断因果关系。通过开发这些技术并将其构建为可供科学家在各个领域使用的工具,该项目有可能彻底改变从数据中获取科学知识的方式。更广泛地说,这些新技术将在任何需要学习更多可解释模型的环境中非常有用,这些模型对它们所期望的行为有很强的要求。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automatic Synthesis of Diverse Weak Supervision Sources for Behavior Analysis
自动合成多种弱监督源进行行为分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tseng, Albert' Sun;Yue, Yisong
  • 通讯作者:
    Yue, Yisong
Interpreting Expert Annotation Differences in Animal Behavior
解释动物行为的专家注释差异
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tjandrasuwita, Megan;Sun, Jennifer J.;Kennedy, Ann;Yue, Yisong
  • 通讯作者:
    Yue, Yisong
Self-Supervised Keypoint Discovery in Behavioral Videos.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yisong Yue其他文献

Generalizability Under Sensor Failure: Tokenization + Transformers Enable More Robust Latent Spaces
传感器故障下的通用性:标记化变压器可实现更强大的潜在空间
  • DOI:
    10.48550/arxiv.2402.18546
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Geeling Chau;Yujin An;Ahamed Raffey Iqbal;Soon;Yisong Yue;Sabera Talukder
  • 通讯作者:
    Sabera Talukder
DeCOIL: Optimization of Degenerate Codon Libraries for Machine Learning-Assisted Protein Engineering
DeCOIL:机器学习辅助蛋白质工程的简并密码子库优化
  • DOI:
    10.1101/2023.05.11.540424
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Yang;Julie Ducharme;Kadina E. Johnston;Francesca;Yisong Yue;F. Arnold
  • 通讯作者:
    F. Arnold
Robust ambulance allocation using risk-based metrics
使用基于风险的指标进行稳健的救护车分配
Computing the Information Content of Trained Neural Networks
计算经过训练的神经网络的信息内容
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeremy Bernstein;Yisong Yue
  • 通讯作者:
    Yisong Yue
Machine Learning-Assisted Directed Evolution Navigates a Combinatorial Epistatic Fitness Landscape with Minimal Screening Burden
机器学习辅助定向进化以最小的筛选负担引导组合上位适应度景观
  • DOI:
    10.1101/2020.12.04.408955
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bruce J. Wittmann;Yisong Yue;F. Arnold
  • 通讯作者:
    F. Arnold

Yisong Yue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yisong Yue', 18)}}的其他基金

CPS: Frontier: Collaborative Research: Data-Driven Cyberphysical Systems
CPS:前沿:协作研究:数据驱动的网络物理系统
  • 批准号:
    1645832
  • 财政年份:
    2017
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant

相似海外基金

Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
  • 批准号:
    2151597
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
  • 批准号:
    1918839
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
  • 批准号:
    1918614
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
  • 批准号:
    1918626
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
  • 批准号:
    1918651
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
  • 批准号:
    1918784
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
  • 批准号:
    1918771
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
  • 批准号:
    1918889
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
  • 批准号:
    1918770
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
  • 批准号:
    1918421
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了