Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
基本信息
- 批准号:1918770
- 负责人:
- 金额:$ 158.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Infectious diseases cause more than 13 million deaths per year worldwide. Rapid growth in human population and its ability to adapt to a variety of environmental conditions has resulted in unprecedented levels of interaction between humans and other species. This rise in interaction combined with emerging trends in globalization, anti-microbial resistance, urbanization, climate change, and ecological pressures has increased the risk of a global pandemic. Computation and data sciences can capture the complexities underlying these disease determinants and revolutionize real-time epidemiology --- leading to fundamentally new ways to reduce the global burden of infectious diseases that has plagued humanity for thousands of years. This Expeditions project will enable novel implementations of global infectious disease computational epidemiology by advancing computational foundations, engineering principles, theoretical understanding, and novel technologies. The innovative tools developed will provide new analytical capabilities to decision makers and result in improved science-based decision making for epidemic planning and response. They will facilitate enhanced inter-agency and inter-government coordination and outbreak response. The team will work closely with many local, regional, national, and international public health agencies and universities to apply and deploy powerful technologies during epidemic outbreaks that can be expected to occur during the course of the project. International scientific networks linked to a comprehensive postdoctoral, graduate and undergraduate student training program will be established. Educational programs to foster interest in and increase understanding of computational science in addressing the complex societal challenges due to pandemics will also be developed. The team, with partners in Asia, Africa, Europe, and Latin America, will produce multidisciplinary scientists with diverse skills related to public health. The novel implementations of this project will be enabled by the development of a rigorous computational theory of spreading and control processes on dynamic multi-scale, multi-layer (MSML) networks, along with tools from AI, machine learning, and social sciences. New techniques resulting from this research will make it possible to develop and apply large-scale simulations of epidemics and social interactions over MSML networks. These simulations, in turn, will provide fundamentally new insights into how to control epidemics. Pervasive computing technologies will be developed to support disease surveillance and real-time response. The computational advances will also be generalizable; that is, they will be applicable to other areas such as cybersecurity, ecology, economics and social sciences. The project will take into account emerging concerns and constraints that include: preserving privacy of individuals and vulnerable groups, enabling model predictions to be interpreted and explained, developing effective interventions under uncertain and unknown network data, understanding strategic and adversarial behaviors of individual agents, and ensuring fairness of the process across the entire population. The research team includes experts from multiple disciplines and will address these societal concerns and constraints in practical, impactful, and novel ways, including the development of computational tools and techniques to support sound, ethical science-based policy pertaining to public health infectious disease epidemiology. Center for Computational Research in Epidemiology (CoRE) at the University of Virginia will be established as a part of the project. CoRE will develop transformative ways to support real-time epidemiology and facilitate improved outbreak response to benefit the society.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全世界每年有1300多万人死于传染病。人口的快速增长及其适应各种环境条件的能力导致人类与其他物种之间的相互作用达到前所未有的水平。这种相互作用的增加,加上全球化、抗微生物药物耐药性、城市化、气候变化和生态压力等新趋势,增加了全球大流行的风险。计算和数据科学可以捕捉到这些疾病决定因素背后的复杂性,并彻底改变实时流行病学——为减少困扰人类数千年的传染病的全球负担带来全新的方法。这个远征项目将通过推进计算基础、工程原理、理论理解和新技术,使全球传染病计算流行病学的新实现成为可能。开发的创新工具将为决策者提供新的分析能力,并改进基于科学的流行病规划和应对决策。它们将促进加强机构间和政府间协调和疫情应对。该团队将与许多地方、区域、国家和国际公共卫生机构和大学密切合作,在项目过程中可能发生的流行病爆发期间应用和部署强大的技术。建立与博士后、研究生和本科生综合培养计划相联系的国际科学网络。还将开发教育项目,以培养对计算机科学的兴趣,并提高对计算机科学的理解,以应对流行病带来的复杂社会挑战。该小组与亚洲、非洲、欧洲和拉丁美洲的合作伙伴将培养具有与公共卫生有关的各种技能的多学科科学家。该项目的新实现将通过发展动态多尺度、多层(MSML)网络上传播和控制过程的严格计算理论,以及人工智能、机器学习和社会科学的工具来实现。这项研究产生的新技术将使开发和应用大规模模拟流行病和MSML网络上的社会互动成为可能。反过来,这些模拟将为如何控制流行病提供根本性的新见解。将开发普适计算技术,以支持疾病监测和实时反应。计算的进步也将是可推广的;也就是说,它们将适用于网络安全、生态学、经济学和社会科学等其他领域。该项目将考虑到新出现的问题和制约因素,包括:保护个人和弱势群体的隐私,使模型预测能够被解释和解释,在不确定和未知的网络数据下开发有效的干预措施,理解个体代理的战略和对抗行为,以及确保整个人口过程的公平性。研究小组包括来自多个学科的专家,将以实用、有效和新颖的方式解决这些社会问题和限制,包括开发计算工具和技术,以支持与公共卫生传染病流行病学有关的合理、道德、科学的政策。作为该项目的一部分,弗吉尼亚大学将建立流行病学计算研究中心(CoRE)。CoRE将开发变革性方法,支持实时流行病学,促进改进疫情应对,造福社会。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Harshavardhan Kamarthi;Lingkai Kong;Alexander Rodr'iguez;Chao Zhang;B. Prakash
- 通讯作者:Harshavardhan Kamarthi;Lingkai Kong;Alexander Rodr'iguez;Chao Zhang;B. Prakash
CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting
- DOI:10.1145/3485447.3512037
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Harshavardhan Kamarthi;Lingkai Kong;Alexander Rodr'iguez;Chao Zhang;B. Prakash
- 通讯作者:Harshavardhan Kamarthi;Lingkai Kong;Alexander Rodr'iguez;Chao Zhang;B. Prakash
Back2Future: Leveraging Backfill Dynamics for Improving Real-time Predictions in Future
Back2Future:利用回填动态改进未来的实时预测
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kamarthi, Harshavardhan;Rodriguez, Alexander;Prakash, B. Aditya
- 通讯作者:Prakash, B. Aditya
Mapping Network States using Connectivity Queries
使用连接查询映射网络状态
- DOI:10.1109/bigdata50022.2020.9378355
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Rodriguez, Alexander;Adhikari, Bijaya;Gonzalez, Andres D.;Nicholson, Charles;Vullikanti, Anil;Prakash, B. Aditya
- 通讯作者:Prakash, B. Aditya
The 4th International Workshop on Epidemiology meets Data Mining and Knowledge Discovery (epiDAMIK 4.0 @ KDD2021)
第四届流行病学国际研讨会满足数据挖掘和知识发现 (epiDAMIK 4.0 @ KDD2021)
- DOI:10.1145/3447548.3469475
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Adhikari, Bijaya;Srivastava, Ajitesh;Pei, Sen;Kefayati, Sarah;Yu, Rose;Yadav, Amulya;Rodríguez, Alexander;Ramanathan, Arvind;Vullikanti, Anil;Prakash, B. Aditya
- 通讯作者:Prakash, B. Aditya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naren Ramakrishnan其他文献
Reconstructing chemical reaction networks: data mining meets system identification
重构化学反应网络:数据挖掘遇上系统识别
- DOI:
10.1145/1401890.1401912 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Y. Cho;Naren Ramakrishnan;Yang Cao - 通讯作者:
Yang Cao
A Nonparametric Approach to Uncovering Connected Anomalies by Tree Shaped Priors
通过树形先验发现关联异常的非参数方法
- DOI:
10.1109/tkde.2018.2868097 - 发表时间:
2019-10 - 期刊:
- 影响因子:0
- 作者:
Nannan Wu;Feng Chen;Jianxin Li;Jin-Peng Huai;Baojian Zhou;Bo Li;Naren Ramakrishnan - 通讯作者:
Naren Ramakrishnan
Forecasting Rare Disease Outbreaks with Spatio-temporal Topic Models
使用时空主题模型预测罕见疾病爆发
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Saurav Ghosh;Theodoros Rekatsinas;S. Mekaru;E. Nsoesie;J. Brownstein;L. Getoor;Naren Ramakrishnan - 通讯作者:
Naren Ramakrishnan
Protein Design by Sampling an Undirected Graphical Model of Residue Constraints
通过对残基约束的无向图形模型进行采样进行蛋白质设计
- DOI:
10.1109/tcbb.2008.124 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
John Thomas;Naren Ramakrishnan;C. Bailey - 通讯作者:
C. Bailey
(Hyper) local news aggregation: designing for social affordances
(超级)本地新闻聚合:针对社会可供性进行设计
- DOI:
10.1145/2307729.2307736 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Andrea L. Kavanaugh;Ankit Ahuja;S. Gad;S. Neidig;Manuel A. Pérez;Naren Ramakrishnan;J. Tedesco - 通讯作者:
J. Tedesco
Naren Ramakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naren Ramakrishnan', 18)}}的其他基金
D-ISN/Collaborative Research: Machine Learning to Improve Detection and Traceability of Forest Products using Stable Isotope Ratio Analysis (SIRA)
D-ISN/合作研究:利用稳定同位素比率分析 (SIRA) 提高林产品检测和可追溯性的机器学习
- 批准号:
2240402 - 财政年份:2023
- 资助金额:
$ 158.71万 - 项目类别:
Standard Grant
NRT-DESE: UrbComp: Data Science for Modeling, Understanding, and Advancing Urban Populations
NRT-DESE:UrbComp:用于建模、理解和促进城市人口发展的数据科学
- 批准号:
1545362 - 财政年份:2015
- 资助金额:
$ 158.71万 - 项目类别:
Standard Grant
Formal Models, Algorithms, and Visualizations for Storytelling Analytics
用于讲故事分析的形式模型、算法和可视化
- 批准号:
0937133 - 财政年份:2009
- 资助金额:
$ 158.71万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integration, Prediction, and Generation of Mixed Mode Information using Graphical Models, with Applications to Protein-Protein Interactions
III:媒介:协作研究:使用图形模型整合、预测和生成混合模式信息,并应用于蛋白质-蛋白质相互作用
- 批准号:
0905313 - 财政年份:2009
- 资助金额:
$ 158.71万 - 项目类别:
Standard Grant
CSR-AES: The Adaptive Code Kitchen: Flexible Approaches to Dynamic Application Composition
CSR-AES:自适应代码厨房:动态应用程序组合的灵活方法
- 批准号:
0615181 - 财政年份:2006
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant
SGER: Personalization by Partial Evaluation
SGER:通过部分评估实现个性化
- 批准号:
0136182 - 财政年份:2002
- 资助金额:
$ 158.71万 - 项目类别:
Standard Grant
NGS: A Microarray Experiment Management System
NGS:微阵列实验管理系统
- 批准号:
0103660 - 财政年份:2001
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant
CAREER: Runtime Recommender Systems for Compositional Modeling of Scientific Computations
职业:用于科学计算组合建模的运行时推荐系统
- 批准号:
9984317 - 财政年份:2000
- 资助金额:
$ 158.71万 - 项目类别:
Standard Grant
相似海外基金
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
2151597 - 财政年份:2021
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918839 - 财政年份:2020
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918614 - 财政年份:2020
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918626 - 财政年份:2020
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918651 - 财政年份:2020
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918784 - 财政年份:2020
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918771 - 财政年份:2020
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918889 - 财政年份:2020
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918865 - 财政年份:2020
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918421 - 财政年份:2020
- 资助金额:
$ 158.71万 - 项目类别:
Continuing Grant