FMitF: Collaborative Research: Track I: Predictive Online Safety Analysis from Multi-hop State Estimates for High-autonomy on Highways

FMITF:合作研究:第一轨:通过多跳状态估计进行预测在线安全分析,以实现高速公路的高度自治

基本信息

项目摘要

The goal of this project is to bring safety assurance to autonomous and semi-autonomous vehicles. The approach is to lengthen the time that a car can predict its driving path, and share this path with surrounding vehicles. With these expanded predictions, it is possible to estimate the current and future behaviors of vehicles, according to their design models. Currently, online formal safety analysis can promise guarantees and oversight, but overly conservative approaches can lead to bad driving. This is in contrast to the use of test-driving data and machine learning to build driving models, which are difficult to analyze. The project aims to discover the right balance by computationally (1) estimating the current state of the autonomous vehicle and its multi-hop environment from sensor data, (2) predicting vehicle trajectories 4-6 seconds into future, and (3) checking the models and predictions---all in milliseconds. A new scientific workshop will be created to explore similar issues in autonomy, in addition to a new undergraduate course on autonomy.The project aims to deliver (1) new sensor-fusion algorithms over Vehicle-to-Infrastructure/Vehicle (V2X) systems, (2) a first-of-its-kind open, machine-interpretable library of agent models for driving predictions, (3) algorithms for model identification, and (4) algorithms for checking safety online. These modules will be integrated in an end-to-end system --- OmniVisor --- and evaluated in realistic accident-prone scenarios with real vehicles in University of Michigan's Mcity facility. The research will build connections across the disciplines of formal methods, hybrid dynamical systems, estimation and detection theory, and mobile networking. If successful OmniVisor will provide a scientific basis for obtaining safety assurances for vehicles in mixed-autonomy scenarios and experimentally demonstrate the approach on the road with real vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是为自动驾驶和半自动驾驶汽车提供安全保障。该方法是延长汽车可以预测其行驶路径的时间,并与周围的车辆共享该路径。通过这些扩展的预测,可以根据车辆的设计模型来估计车辆的当前和未来行为。目前,在线正式的安全分析可以保证和监督,但过于保守的方法可能导致不良驾驶。这与使用试驾数据和机器学习来构建驾驶模型形成了鲜明对比,这些模型很难分析。该项目旨在通过计算来发现正确的平衡:(1)根据传感器数据估计自动驾驶汽车的当前状态及其多跳环境,(2)预测未来4 - 6秒的车辆轨迹,以及(3)检查模型和预测-所有这些都在毫秒内。该项目旨在提供(1)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(2)第一个开放的、机器可解释的驾驶预测代理模型库,(3)模型识别算法,(4)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(5)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(6)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(7)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(8)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(9)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(10)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(11)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(12)车辆到基础设施/车辆(和(4)在线检查安全的算法。这些模块将被集成到一个端到端的系统-OmniVisor-并在密歇根大学Mcity设施中使用真实的车辆在现实的事故多发场景中进行评估。该研究将建立跨学科的正式方法,混合动力系统,估计和检测理论,和移动的网络连接。如果成功,OmniVisor将为混合自动驾驶场景下的车辆获得安全保证提供科学依据,并在道路上用真实的车辆进行实验演示。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Convergence of the Backward Reachable Sets of Robust Controlled Invariant Sets For Discrete-time Linear Systems
离散时间线性系统鲁棒受控不变集后向可达集的收敛性
  • DOI:
    10.1109/cdc51059.2022.9993110
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Zexiang;Ozay, Necmiye
  • 通讯作者:
    Ozay, Necmiye
Compositional safety rules for inter-triggering hybrid automata
相互触发混合自动机的组合安全规则
Continuous integration and testing for autonomous racing software: An experience report from GRAIC
自动驾驶赛车软件的持续集成和测试:来自 GRAIC 的经验报告
Connected and automated road vehicles: state of the art and future challenges
  • DOI:
    10.1080/00423114.2020.1741652
  • 发表时间:
    2020-03-25
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Ersal, Tulga;Kolmanovsky, Ilya;Orosz, Gabor
  • 通讯作者:
    Orosz, Gabor
Automaton-based Implicit Controlled Invariant Set Computation for Discrete-Time Linear Systems
离散时间线性系统基于自动机的隐式受控不变集计算
  • DOI:
    10.1109/cdc45484.2021.9683574
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Zexiang;Anevlavis, Tzanis;Ozay, Necmiye;Tabuada, Paulo
  • 通讯作者:
    Tabuada, Paulo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Necmiye Ozay其他文献

Nodal Operating Envelopes vs. Network-wide Constraints: What is better for network-safe coordination of DERs?
节点运行范围与网络范围的约束:对于分布式能源的网络安全协调来说,什么更好?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Hannah Moring;Sunho Jang;Necmiye Ozay;Johanna L. Mathieu
  • 通讯作者:
    Johanna L. Mathieu
Towards Better Adaptive Systems by Combining MAPE, Control Theory, and Machine Learning
通过结合 MAPE、控制理论和机器学习来实现更好的自适应系统
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danny Weyns;Bradley Schmerl;Masako Kishida;Alberto Leva;Marin Litoiu;Necmiye Ozay;Colin Paterson;and Kenji Tei
  • 通讯作者:
    and Kenji Tei
Risk adjusted output feedback Receding Horizon control of constrained Linear Parameter Varying Systems
约束线性参数变化系统的风险调整输出反馈后退控制
  • DOI:
    10.23919/ecc.2007.7068641
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mario Sznaier;C. Lagoa;Necmiye Ozay
  • 通讯作者:
    Necmiye Ozay
Passivity-based analysis of sampled and quantized control implementations
  • DOI:
    10.1016/j.automatica.2020.109064
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiangru Xu;Necmiye Ozay;Vijay Gupta
  • 通讯作者:
    Vijay Gupta

Necmiye Ozay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Necmiye Ozay', 18)}}的其他基金

CPS: Medium: Collaborative Research: Data-Driven Modeling and Preview-Based Control for Cyber-Physical System Safety
CPS:中:协作研究:数据驱动的建模和基于预览的网络物理系统安全控制
  • 批准号:
    1931982
  • 财政年份:
    2020
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
CPS: Small: Scalable and safe control synthesis for systems with symmetries
CPS:小型:对称系统的可扩展且安全的控制综合
  • 批准号:
    1837680
  • 财政年份:
    2019
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
CAREER: A Compositional Approach to Modular Cyber-Physical Control System Design
职业:模块化网络物理控制系统设计的组合方法
  • 批准号:
    1553873
  • 财政年份:
    2016
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant

相似海外基金

FMitF: Collaborative Research: RedLeaf: Verified Operating Systems in Rust
FMITF:协作研究:RedLeaf:经过验证的 Rust 操作系统
  • 批准号:
    2313411
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Game Theoretic Updates for Network and Cloud Functions
合作研究:FMitF:第一轨:网络和云功能的博弈论更新
  • 批准号:
    2318970
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Knitting Semantics
合作研究:FMitF:第一轨:针织语义
  • 批准号:
    2319182
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319242
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
  • 批准号:
    2349461
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319243
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
  • 批准号:
    2319400
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
  • 批准号:
    2319399
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Simplifying End-to-End Verification of High-Performance Distributed Systems
合作研究:FMitF:第一轨:简化高性能分布式系统的端到端验证
  • 批准号:
    2318954
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: The Phlox framework for verifying a high-performance distributed database
合作研究:FMitF:第一轨:用于验证高性能分布式数据库的 Phlox 框架
  • 批准号:
    2319167
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了