CPS: Medium: Collaborative Research: Data-Driven Modeling and Preview-Based Control for Cyber-Physical System Safety

CPS:中:协作研究:数据驱动的建模和基于预览的网络物理系统安全控制

基本信息

项目摘要

This project will develop the theory and algorithmic tools for the design of provably-safe controllers that can leverage preview information from different sources. Many autonomous or semi-autonomous cyber-physical systems (CPS) are equipped with mechanisms that provide a window of projecting into the future. These mechanisms can be forward looking sensors like cameras (and corresponding perception algorithms), map information, forecast information, or more complicated predictive models of external agents learned from data. Through these mechanisms, at run-time, the systems have a preview of what lies ahead. Leveraging this information to improve performance of CPS while keeping strong guarantees on their safety, therefore, holds great promise for multiple technologies of national interest. We will use driver-assist systems in connected vehicles as the main application. Education and outreach activities will involve undergraduate and graduate students along with stakeholders from local automotive companies.To develop the theory for learning- and prediction-enabled safety for CPS we will: (i) develop a modeling formalism, namely preview automata, for systems with preview information and correct-by-construction control algorithms that consider structured inaccuracies in the predictions for resilience; (ii) investigate how cooperation can assist in enriching the preview information; (iii) learn, via finite-sample data analysis, trustworthy dynamical models of the behaviors of non-cooperative agents with provable uncertainty bounds; and (iv) design methods for selecting compatible models from the learned dynamical models and for deriving safe controllers in the presence of cooperative and non-cooperative agents. Our innovations will enable safety-critical CPS to take full advantage of emerging technologies on sensing, perception, communication, and learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发用于设计可证明安全的控制器的理论和算法工具,这些控制器可以利用来自不同来源的预览信息。许多自主或半自主的信息物理系统(CPS)都配备了一种机制,可以提供一个预测未来的窗口。这些机制可以是前瞻性传感器,如摄像头(以及相应的感知算法)、地图信息、预测信息或从数据中学习的外部代理的更复杂的预测模型。通过这些机制,在运行时,系统可以预览未来的情况。利用这些信息来提高CPS的性能,同时保持对其安全性的强有力保证,因此,对于国家利益的多种技术来说,这是一个巨大的希望。我们将在联网车辆中使用驾驶员辅助系统作为主要应用。教育和外展活动将涉及本科生和研究生沿着与当地汽车公司的利益相关者。为了发展学习和预测启用的CPS安全理论,我们将:(i)开发一个建模形式主义,即预览自动机,系统的预览信息和纠正的建设控制算法,考虑结构不准确的预测弹性;(ii)研究合作如何有助于丰富预览信息;(iii)通过有限样本数据分析,学习具有可证明的不确定性界限的非合作代理行为的可信动力学模型;和(四)设计方法,用于从学习的动态模型中选择兼容的模型,以及用于在存在协作和不合作的代理商。我们的创新将使安全关键型CPS充分利用传感、感知、通信和学习方面的新兴技术。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Constructive Method for Designing Safe Multirate Controllers for Differentially-Flat Systems
  • DOI:
    10.1109/lcsys.2021.3136465
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Devansh R. Agrawal;Hardik Parwana;Ryan K. Cosner;Ugo Rosolia;A. Ames;Dimitra Panagou
  • 通讯作者:
    Devansh R. Agrawal;Hardik Parwana;Ryan K. Cosner;Ugo Rosolia;A. Ames;Dimitra Panagou
Scalable Computation of Controlled Invariant Sets for Discrete-Time Linear Systems with Input Delays
具有输入延迟的离散时间线性系统的受控不变集的可扩展计算
  • DOI:
    10.23919/acc45564.2020.9147731
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Zexiang;Yang, Liren;Ozay, Necmiye
  • 通讯作者:
    Ozay, Necmiye
On the Hardness of Learning to Stabilize Linear Systems
论学习稳定线性系统的难度
Controlled Invariant Sets: Implicit Closed-Form Representations and Applications
受控不变集:隐式闭式表示和应用
  • DOI:
    10.1109/tac.2023.3336819
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Anevlavis, Tzanis;Liu, Zexiang;Ozay, Necmiye;Tabuada, Paulo
  • 通讯作者:
    Tabuada, Paulo
Safe Control Design for Unknown Nonlinear Systems with Koopman-based Fixed-Time Identification
基于库普曼固定时间辨识的未知非线性系统的安全控制设计
  • DOI:
    10.1016/j.ifacol.2023.10.421
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Black, Mitchell;Panagou, Dimitra
  • 通讯作者:
    Panagou, Dimitra
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Necmiye Ozay其他文献

Nodal Operating Envelopes vs. Network-wide Constraints: What is better for network-safe coordination of DERs?
节点运行范围与网络范围的约束:对于分布式能源的网络安全协调来说,什么更好?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Hannah Moring;Sunho Jang;Necmiye Ozay;Johanna L. Mathieu
  • 通讯作者:
    Johanna L. Mathieu
Towards Better Adaptive Systems by Combining MAPE, Control Theory, and Machine Learning
通过结合 MAPE、控制理论和机器学习来实现更好的自适应系统
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danny Weyns;Bradley Schmerl;Masako Kishida;Alberto Leva;Marin Litoiu;Necmiye Ozay;Colin Paterson;and Kenji Tei
  • 通讯作者:
    and Kenji Tei
Risk adjusted output feedback Receding Horizon control of constrained Linear Parameter Varying Systems
约束线性参数变化系统的风险调整输出反馈后退控制
  • DOI:
    10.23919/ecc.2007.7068641
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mario Sznaier;C. Lagoa;Necmiye Ozay
  • 通讯作者:
    Necmiye Ozay
Passivity-based analysis of sampled and quantized control implementations
  • DOI:
    10.1016/j.automatica.2020.109064
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiangru Xu;Necmiye Ozay;Vijay Gupta
  • 通讯作者:
    Vijay Gupta

Necmiye Ozay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Necmiye Ozay', 18)}}的其他基金

CPS: Small: Scalable and safe control synthesis for systems with symmetries
CPS:小型:对称系统的可扩展且安全的控制综合
  • 批准号:
    1837680
  • 财政年份:
    2019
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
FMitF: Collaborative Research: Track I: Predictive Online Safety Analysis from Multi-hop State Estimates for High-autonomy on Highways
FMITF:合作研究:第一轨:通过多跳状态估计进行预测在线安全分析,以实现高速公路的高度自治
  • 批准号:
    1918123
  • 财政年份:
    2019
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
CAREER: A Compositional Approach to Modular Cyber-Physical Control System Design
职业:模块化网络物理控制系统设计的组合方法
  • 批准号:
    1553873
  • 财政年份:
    2016
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
  • 批准号:
    2333980
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223987
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305882
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
  • 批准号:
    2241796
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了