Collaborative Research: New Bayesian Methods for Modeling the Effect of Antiretroviral Drugs on Depressive Symptomatology in HIV patients

合作研究:用于模拟抗逆转录病毒药物对艾滋病毒患者抑郁症状影响的新贝叶斯方法

基本信息

  • 批准号:
    1918851
  • 负责人:
  • 金额:
    $ 5.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Antiretroviral therapy (ART) has transformed HIV infection into a manageable chronic disease, thereby shifting the focus of the care for people living with HIV more toward controlling the adverse effects of ART. Depression is the leading mental health comorbidity of HIV infection and may trigger negative consequences such as poor adherence to ART, more rapid HIV disease progression, and engagement in risky behaviors. Since ART is recommended for all HIV patients and must be continued indefinitely, minimizing the adverse effects of ART has garnered increasing attention. Due to the rapid generation of drug-resistant mutations, modern ART typically combines three or four ART drugs of different mechanisms or against different targets. Understanding the effects of a single ART drug or combinations of ART drugs can help physicians better manage patients' depression, guide treatment changes if needed, and facilitate individualized treatment. This project aims to fill a critical gap in the availability of appropriate statistical models to systematically investigate the effects of ART on depression. Recent technological advances in the biomedical field have led to rapid accumulation of health- and disease-related data, which provide researchers with an unprecedented opportunity to make reliable and efficient inference from these complex and heterogeneous datasets using novel statistical models. This project will use data from the Women's Interagency HIV Study (WIHS), a prospective, observational, multi-center study which includes more than 4,000 women living with HIV or at risk for HIV infection in the United States.This project aims to develop novel Bayesian parametric and nonparametric models to estimate the effects of ART based on patients' longitudinal medication data and depression outcomes, adjusting for socio-demographic, behavioral, and clinical factors. Specifically, a new Bayesian longitudinal graphical model will be developed with nodes representing drugs and depression items, and weighted edges representing the strength of the drug-depression relationships, which may vary across different clinical visits and different patients. In addition, a novel Bayesian framework that incorporates the similarity between different drug combinations as well as accounts for patients' treatment histories will be developed to learn arbitrary drug combination effects. The proposed work will bridge the gap between the experience/knowledge acquired during basic research and day-to-day practice by facilitating the understanding of the adverse effects of individual drugs, guiding more informed and effective treatment regimen selection, and eventually helping to reduce the healthcare resource burden. The proposed models can be easily generalized to learn other ART-related complications such as cognitive impairment, and may also be used in a wide range of applications across multiple biomedical fields and beyond, such as electronic health record data analysis for chronic conditions, study of combination therapy for cancer treatment, and injury prevention in sports medicine.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
抗逆转录病毒疗法(ART)已将艾滋病毒感染转化为一种可管理的慢性疾病,从而将艾滋病毒感染者的护理重点更多地转向控制ART的不良影响。抑郁症是艾滋病毒感染的主要心理健康并发症,并可能引发不良后果,如对ART的依从性差,艾滋病毒疾病进展更快,并参与危险行为。 由于ART被推荐给所有HIV患者,并且必须无限期地持续下去,因此尽量减少ART的不良影响已经引起了越来越多的关注。 由于耐药突变的快速产生,现代ART通常结合三种或四种不同机制或针对不同靶点的ART药物。 了解单一ART药物或ART药物组合的效果可以帮助医生更好地管理患者的抑郁症,在需要时指导治疗变化,并促进个性化治疗。 该项目旨在填补适当统计模型可用性方面的关键空白,以系统地研究ART对抑郁症的影响。 生物医学领域的最新技术进步导致了健康和疾病相关数据的快速积累,这为研究人员提供了前所未有的机会,可以使用新的统计模型从这些复杂和异构的数据集进行可靠和有效的推断。 该项目将使用来自妇女跨部门艾滋病研究(WIHS)的数据,这是一项前瞻性、观察性、多中心研究,包括美国4,000多名艾滋病病毒感染者或有感染艾滋病风险的妇女。该项目旨在开发新的贝叶斯参数和非参数模型,以根据患者的纵向药物数据和抑郁症结局估计ART的效果,根据社会人口统计学、行为和临床因素进行调整。 具体而言,将开发一个新的贝叶斯纵向图形模型,其中节点代表药物和抑郁项目,加权边代表药物-抑郁关系的强度,这可能会因不同的临床访视和不同的患者而异。 此外,将开发一种新的贝叶斯框架,该框架结合了不同药物组合之间的相似性,并考虑了患者的治疗史,以了解任意药物组合的效果。 拟议的工作将弥合基础研究和日常实践中获得的经验/知识之间的差距,促进对个别药物不良反应的理解,指导更明智和有效的治疗方案选择,并最终帮助减少医疗资源负担。所提出的模型可以很容易地推广到学习其他ART相关并发症,如认知障碍,并且还可以用于跨多个生物医学领域和其他领域的广泛应用,如慢性病的电子健康记录数据分析,癌症治疗的联合疗法研究,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian biclustering for microbial metagenomic sequencing data via multinomial matrix factorization
通过多项矩阵分解对微生物宏基因组测序数据进行贝叶斯双聚类
  • DOI:
    10.1093/biostatistics/kxab002
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Zhou Fangting;He Kejun;Li Qiwei;Chapkin Robert S.;Ni Yang
  • 通讯作者:
    Ni Yang
DNB: A Joint Learning Framework for Deep Bayesian Nonparametric Clustering
Bayesian Causal Structural Learning with Zero-Inflated Poisson Bayesian Networks
使用零膨胀泊松贝叶斯网络进行贝叶斯因果结构学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang Ni其他文献

Kicking the tires of software transactional memory: why the going gets tough
软件事务内存的疲劳:为什么事情会变得艰难
The life expectancy benefits on respiratory diseases gained by reducing the daily concentration of particulate matter to attain different air quality standard targets: findings from a 5-year time-series study in Tianjin, China
通过降低每日颗粒物浓度以达到不同的空气质量标准目标,对呼吸系统疾病的预期寿命有好处:中国天津五年时间序列研究的结果
Supplementary Material for “Bayesian Graphical Regression”
“贝叶斯图形回归”的补充材料
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Ni;F. Stingo;Veerabhadran;Baladandayuthapani
  • 通讯作者:
    Baladandayuthapani
Protein Kinase D 1 mediates Class IIa Histone Deacetylase Phosphorylation and 1 Nuclear Extrusion in Intestinal Epithelial Cells : Role in Mitogenic Signaling 2 3
蛋白激酶 D 1 介导 IIa 类组蛋白脱乙酰酶磷酸化和 1 肠上皮细胞中的核挤出:在有丝分裂信号传导中的作用 2 3
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Sinnett;Yang Ni;J. Wang;M. Ming;S. H. Young;E. Rozengurt
  • 通讯作者:
    E. Rozengurt
Scalar-Function Causal Discovery for Generating Causal Hypotheses with Observational Wearable Device Data
使用观测可穿戴设备数据生成因果假设的标量函数因果发现

Yang Ni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang Ni', 18)}}的其他基金

CBMS Conference: Foundations of Causal Graphical Models and Structure Discovery
CBMS 会议:因果图模型和结构发现的基础
  • 批准号:
    2227849
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Automated Causal Discovery with Observational Data via Directed Graphical Models - New Theory and Methods
通过有向图形模型利用观测数据自动发现因果关系 - 新理论和方法
  • 批准号:
    2112943
  • 财政年份:
    2021
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315699
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2415067
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了