CPS: Frontier: Collaborative Research: Data-Driven Cyberphysical Systems

CPS:前沿:协作研究:数据驱动的网络物理系统

基本信息

  • 批准号:
    1645832
  • 负责人:
  • 金额:
    $ 28.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Data-driven cyber-physical systems are ubiquitous in many sectors including manufacturing, automotive, transportation, utilities and health care. This project develops the theory, methods and tools necessary to answer the central question "how can we, in a data-rich world, design and operate cyber-physical systems differently?" The resulting data-driven techniques will transform the design and operation process into one in which data and models - and human designers and operators - continuously and fluently interact. This integrated view promises capabilities beyond its parts. Explicitly integrating data will lead to more efficient decision-making and help reduce the gap from model-based design to system deployment. Furthermore, it will blend design- and run-time tasks, and help develop cyber-physical systems not only for their initial deployment but also for their lifetime.While proposed theory, methods and tools will cut across the spectrum of cyber-physical systems, the project focuses on their implications in the emerging application of additive manufacturing. Even though a substantial amount of engineering time is spent, additive manufacturing processes often fail to produce acceptable geometric, material or electro-mechanical properties. Currently, there is no mechanism for predicting and correcting these systematic, repetitive errors nor to adapt the design process to encompass the peculiarities of this manufacturing style. A data-driven cyber-physical systems perspective has the potential to overcome these challenges in additive manufacturing. The project's education plan focuses on the already much needed transformation of the undergraduate and graduate curricula to train engineers and computer scientists who will create the next-generation of cyber-physical with a data-driven mindset. The team will reach out to K-12 students and educators through a range of activities, and to undergraduate students from underrepresented groups through year-long research projects. All educational material generated by the project will be shared publicly.
数据驱动的网络物理系统在许多领域无处不在,包括制造业、汽车、运输、公用事业和医疗保健。该项目开发了必要的理论,方法和工具来回答核心问题“我们如何在数据丰富的世界中以不同的方式设计和操作网络物理系统?”“由此产生的数据驱动技术将把设计和操作过程转变为一个数据和模型-以及人类设计师和操作员-持续和流畅地交互的过程。这种集成视图承诺了超出其部分的功能。明确地集成数据将导致更有效的决策制定,并有助于减少从基于模型的设计到系统部署的差距。此外,该项目还将融合设计和运行时任务,帮助开发网络物理系统,不仅是为了初始部署,也是为了整个生命周期。虽然提出的理论、方法和工具将跨越网络物理系统的范围,但该项目侧重于它们在增材制造新兴应用中的影响。尽管花费了大量的工程时间,增材制造工艺通常无法产生可接受的几何、材料或机电性能。目前,还没有机制来预测和纠正这些系统性的重复性错误,也没有机制来调整设计过程以涵盖这种制造风格的特点。数据驱动的网络物理系统视角有可能克服增材制造中的这些挑战。该项目的教育计划侧重于对本科和研究生课程进行急需的改革,以培养工程师和计算机科学家,他们将以数据驱动的思维方式创建下一代网络物理。该团队将通过一系列活动接触K-12学生和教育工作者,并通过为期一年的研究项目接触来自代表性不足群体的本科生。该项目产生的所有教育材料将公开分享。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Imitation-Projected Programmatic Reinforcement Learning
  • DOI:
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abhinav Verma;Hoang Minh Le;Yisong Yue;Swarat Chaudhuri
  • 通讯作者:
    Abhinav Verma;Hoang Minh Le;Yisong Yue;Swarat Chaudhuri
Teaching Multiple Concepts to a Forgetful Learner
向健忘的学习者教授多种概念
Co-training for Policy Learning
  • DOI:
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jialin Song;Ravi Lanka;Yisong Yue;M. Ono
  • 通讯作者:
    Jialin Song;Ravi Lanka;Yisong Yue;M. Ono
Learning to make decisions via submodular regularization
学习通过子模正则化做出决策
Minimax Model Learning
极小极大模型学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yisong Yue其他文献

Generalizability Under Sensor Failure: Tokenization + Transformers Enable More Robust Latent Spaces
传感器故障下的通用性:标记化变压器可实现更强大的潜在空间
  • DOI:
    10.48550/arxiv.2402.18546
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Geeling Chau;Yujin An;Ahamed Raffey Iqbal;Soon;Yisong Yue;Sabera Talukder
  • 通讯作者:
    Sabera Talukder
DeCOIL: Optimization of Degenerate Codon Libraries for Machine Learning-Assisted Protein Engineering
DeCOIL:机器学习辅助蛋白质工程的简并密码子库优化
  • DOI:
    10.1101/2023.05.11.540424
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Yang;Julie Ducharme;Kadina E. Johnston;Francesca;Yisong Yue;F. Arnold
  • 通讯作者:
    F. Arnold
Robust ambulance allocation using risk-based metrics
使用基于风险的指标进行稳健的救护车分配
Computing the Information Content of Trained Neural Networks
计算经过训练的神经网络的信息内容
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeremy Bernstein;Yisong Yue
  • 通讯作者:
    Yisong Yue
Machine Learning-Assisted Directed Evolution Navigates a Combinatorial Epistatic Fitness Landscape with Minimal Screening Burden
机器学习辅助定向进化以最小的筛选负担引导组合上位适应度景观
  • DOI:
    10.1101/2020.12.04.408955
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bruce J. Wittmann;Yisong Yue;F. Arnold
  • 通讯作者:
    F. Arnold

Yisong Yue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yisong Yue', 18)}}的其他基金

Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
  • 批准号:
    1918865
  • 财政年份:
    2020
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CPS: Frontier: Computation-Aware Algorithmic Design for Cyber-Physical Systems
合作研究:CPS:前沿:网络物理系统的计算感知算法设计
  • 批准号:
    2111688
  • 财政年份:
    2022
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
CPS: Frontier: Collaborative Research: COALESCE: COntext Aware LEarning for Sustainable CybEr-Agricultural Systems
CPS:前沿:协作研究:COALESCE:可持续网络农业系统的情境感知学习
  • 批准号:
    1954556
  • 财政年份:
    2021
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
CPS: Frontier: Collaborative Research: Compositional, Approximate, and Quantitative Reasoning for Medical Cyber-Physical Systems
CPS:前沿:协作研究:医疗网络物理系统的组合、近似和定量推理
  • 批准号:
    2028677
  • 财政年份:
    2020
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
CPS: Frontier: Collaborative Research: Cognitive Autonomy for Human CPS: Turning Novices into Experts
CPS:前沿:协作研究:人类 CPS 的认知自主性:将新手变成专家
  • 批准号:
    1836952
  • 财政年份:
    2019
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
CPS: Frontier: Collaborative Research: Cognitive Autonomy for Human CPS: Turning Novices into Experts
CPS:前沿:协作研究:人类 CPS 的认知自主性:将新手变成专家
  • 批准号:
    1836900
  • 财政年份:
    2019
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
CPS: Frontier: Collaborative Research: Data-Driven Cyberphysical Systems
CPS:前沿:协作研究:数据驱动的网络物理系统
  • 批准号:
    1646522
  • 财政年份:
    2017
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
CPS: Frontier: Collaborative Research: Correct-by-Design Control Software Synthesis for Highly Dynamic Systems
CPS:前沿:协作研究:高动态系统的设计正确控制软件综合
  • 批准号:
    1724457
  • 财政年份:
    2017
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
CPS: Frontier: Collaborative Research: Data-Driven Cyberphysical Systems
CPS:前沿:协作研究:数据驱动的网络物理系统
  • 批准号:
    1645648
  • 财政年份:
    2017
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
CPS: TTP Option: Frontier: Collaborative Research: A Bi-Directional Brain-Computer Interface for Restoration of Walking and Lower Extremity Sensation after Spinal Cord Injury
CPS:TTP 选项:前沿:协作研究:用于恢复脊髓损伤后行走和下肢感觉的双向脑机接口
  • 批准号:
    1646636
  • 财政年份:
    2017
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
CPS: Frontier: Collaborative Research: Data-Driven Cyberphysical Systems
CPS:前沿:协作研究:数据驱动的网络物理系统
  • 批准号:
    1645964
  • 财政年份:
    2017
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了