Dielectric nanofluids for electrostatic machines

用于静电机器的介电纳米流体

基本信息

  • 批准号:
    1920441
  • 负责人:
  • 金额:
    $ 39.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Increases in the nation's population have created an unprecedented demand for electric motors in conventional and emerging technologies. New uses of electricity, including electric vehicles, server farms to support the internet, and high-speed rail, have contributed additional demands for electric motors. Furthermore, direct drive wind turbines and drones could benefit from reconfigurations of their drive trains. Conventional electromagnetic motors utilize rare earth elements such as dysprosium and neodymium whose future availabilities are uncertain. Electrostatic motors can be made sustainably, but improvements in torque output are required for many applications. Increased torque can be achieved by increasing the dielectric constant of the fluid within the motor. Adding small particles can increase the fluid's dielectric constant, but the particle-fluid mixture can become too viscous for motor applications. In this project, mathematical models and computer simulations will be used to engineer particle-fluid mixtures that have high dielectric constants and low viscosities. The research team will partner with the University of Wisconsin's Institute for Chemical Education to guide undergraduate students in constructing demonstrations of electrostatics intended for K-12 students. The demonstrations will be used at various venues to engage the public in novel applications of electrostatics.The large electric fields required for electrostatic motors can cause field-induced aggregation of the particles in the suspension within the motor. Aggregation of the particles leads, in turn, to large increases in the suspension viscosity, which diminishes motor performance. Particle aggregation can be avoided by employing Brownian nanoparticles in the suspension, such that thermal motion can overcome the field-induced forces. Aggregation of the particles due to van der Waals forces can be avoided by steric stabilization. Particle-level simulations will be employed to determine the relationships between particle size and concentration, electric field strength and frequency, steric layer properties, and the macroscopic dielectric and rheological properties of the suspensions. The results of this work will enable practitioners to engineer effective nanoparticle suspensions for a variety of electrostatic motor applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
国家人口的增长对传统和新兴技术的电动机产生了前所未有的需求。电力的新用途,包括电动汽车、支持互联网的服务器群和高速铁路,都增加了对电动机的需求。此外,直接驱动的风力涡轮机和无人机可以从其传动系统的重新配置中受益。传统的电磁马达使用镝和钕等稀土元素,其未来的可用性尚不确定。静电电机可以可持续地制造,但在许多应用中需要改进扭矩输出。增加的扭矩可以通过增加电机内流体的介电常数来实现。添加小颗粒可以增加流体的介电常数,但颗粒-流体混合物可能变得过于粘稠,不适用于电机应用。在这个项目中,数学模型和计算机模拟将用于设计具有高介电常数和低粘度的颗粒-流体混合物。该研究团队将与威斯康星大学化学教育研究所合作,指导本科生为K-12学生构建静电演示。这些示范将在不同的场地进行,让公众了解静电的新应用。静电电机所需的大电场会引起电机内悬浮颗粒的场致聚集。颗粒的聚集反过来又导致悬浮液粘度的大幅增加,从而降低了电机性能。在悬浮液中使用布朗纳米粒子可以避免粒子聚集,这样热运动可以克服场致力。由范德华力引起的粒子聚集可以通过空间稳定来避免。粒子级模拟将用于确定颗粒大小和浓度、电场强度和频率、立体层性质以及悬浮液的宏观介电和流变性能之间的关系。这项工作的结果将使从业者能够为各种静电电机应用设计有效的纳米颗粒悬浮液。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Klingenberg其他文献

Daniel Klingenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Klingenberg', 18)}}的其他基金

Heterogeneities and instabilities during flow processing of biomass
生物质流动加工过程中的异质性和不稳定性
  • 批准号:
    1336611
  • 财政年份:
    2013
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Continuing Grant
GOALI Collaborative Research: Engineering magnetorheological fluids by controlling nonmagnetic particle interactions
GOALI 合作研究:通过控制非磁性粒子相互作用来设计磁流变流体
  • 批准号:
    0932680
  • 财政年份:
    2009
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
GOALI: Multiscale Modeling of Electro- and Magnetorheological Fluids
GOALI:电流变液和磁流变液的多尺度建模
  • 批准号:
    0424087
  • 财政年份:
    2005
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
CAREER: Mechanisms and Models for Complex Materials
职业:复杂材料的机制和模型
  • 批准号:
    9502276
  • 财政年份:
    1995
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
Surfactant-Activated Electrorheological Materials
表面活性剂活化电流变材料
  • 批准号:
    9401293
  • 财政年份:
    1994
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Fundamentals and Applications of Electrochemically Active Nanofluids for Energy Storage and Conversion
职业:用于能量存储和转换的电化学活性纳米流体的基础和应用
  • 批准号:
    2338147
  • 财政年份:
    2024
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Continuing Grant
Computational modelling of nanofluids for industrial applications
工业应用纳米流体的计算模型
  • 批准号:
    DP230102414
  • 财政年份:
    2023
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Discovery Projects
GOALI: Investigation of High-Speed Face Milling of Difficult-to-Cut Materials with Minimum Quantity Lubrication Using High Oleic Soybean Oil-Based Nanofluids
GOALI:使用高油酸大豆油纳米流体进行微量润滑的难切削材料高速面铣研究
  • 批准号:
    2218786
  • 财政年份:
    2022
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
PFI-RP: Micellar Nanofluids to Reduce Use of Harmful Solvents in Oil and Gas Production
PFI-RP:胶束纳米流体可减少石油和天然气生产中有害溶剂的使用
  • 批准号:
    2141112
  • 财政年份:
    2022
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
Advanced water technology using nanofluids
使用纳米流体的先进水技术
  • 批准号:
    561121-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Alliance Grants
Advanced water technology using nanofluids
使用纳米流体的先进水技术
  • 批准号:
    561121-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Alliance Grants
Fabrication of amorphous alloy nanofluids by sputtering and their field enhancement effect
非晶态合金纳米流体的溅射制备及其场增强效应
  • 批准号:
    20K05278
  • 财政年份:
    2020
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coupled experimental and numerical study of innovative nanofluids: from characterization to their performances in a prototype of heat exchanger
创新纳米流体的实验和数值耦合研究:从热交换器原型的表征到性能
  • 批准号:
    500415-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Collaborative Research and Development Grants
Development of hydrogen production utilizing magnetic ejection effect of magnetic nanofluids
利用磁性纳米流体磁喷射效应制氢的进展
  • 批准号:
    20K15218
  • 财政年份:
    2020
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Liquid dynamics in ionic liquid based nanofluids
离子液体纳米流体中的液体动力学
  • 批准号:
    19K12632
  • 财政年份:
    2019
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了