Advancing Computational Grounded Theory for Audiovisual Data from STEM Classrooms

推进 STEM 课堂视听数据的计算基础理论

基本信息

  • 批准号:
    1920796
  • 负责人:
  • 金额:
    $ 131.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This proposal was submitted in response to EHR Core Research (ECR) program announcement NSF 19-508. The ECR program of fundamental research in STEM education provides funding in critical research areas that are essential, broad and enduring. EHR seeks proposals that will help synthesize, build and/or expand research foundations in the following focal areas: STEM learning, STEM learning environments, STEM workforce development, and broadening participation in STEM. The ECR program is distinguished by its emphasis on the accumulation of robust evidence to inform efforts to (a) understand, (b) build theory to explain, and (c) suggest interventions (and innovations) to address persistent challenges in STEM interest, education, learning, and participation.This EHR Core Research project is conducting methodological research on the computational analysis of video data focused on the social and spatial dimensions of STEM learning in classrooms. Video data are complex. They involve visual, acoustic, spatial, and temporal features that can be reduced in several ways. To date, analysis of video data of STEM classrooms has not been able to leverage computational power to take advantage of their richness. However, recent advancements in data science, coupled with existing speech analytics methods, make it possible to computationally identify important features from video in ways that preserve complexity and nuance. These advancements will improve research replicability. The methods developed through this project will facilitate use of sophisticated computational analysis with video data by more researchers. Application of these new methods will help increase the scale and generalizability of video research and lead to the building of new theory. This research project builds on state-of-the-art computer vision and speech analytics methods tested on video data collected in STEM classrooms. It does so within a computational grounded theory methodological framework, which leverages the interpretive power of grounded analytical approaches with the processing power of computational methods. Specifically, two types of computational analysis procedures will be produced: (a) extracting meaningful features from video and audio data of STEM classrooms, and (b) conducting exploratory pattern identification using these extracted features. To develop these procedures, existing large-scale video datasets of STEM classrooms will be used to test and refine increasingly sophisticated analyses, which will also be used to demonstrate the application of these methods to investigate the social and spatial dimensions of STEM classrooms. The project focuses on integrating these methods to improve their power and leverages existing large-scale datasets of STEM classrooms, such that the methods developed can be tested on realistic data. The datasets are extensive enough to support the investigation of a wide range of research questions, including high-inference questions about students' participation in disciplinary practices. Finally, by pairing computational and grounded analytical methods, the project is developing methods that have the potential to enhance and test construct validity of the patterns found in the data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该提案是为了响应EHR核心研究(ECR)计划公告NSF 19-508而提交的。在STEM教育的基础研究ECR计划提供资金在关键的研究领域是必不可少的,广泛的和持久的。EHR寻求有助于综合,建立和/或扩大以下重点领域研究基础的建议:STEM学习,STEM学习环境,STEM劳动力发展和扩大STEM参与。ECR计划的特点是强调积累强有力的证据,为以下努力提供信息:(a)理解,(B)建立解释理论,(c)建议干预措施(和创新),以应对STEM兴趣,教育,学习,这个EHR核心研究项目正在对视频数据的计算分析进行方法研究,重点是社会和空间在课堂上学习STEM的维度。视频数据很复杂。它们涉及视觉,听觉,空间和时间特征,可以通过几种方式减少。到目前为止,STEM教室视频数据的分析还无法利用计算能力来利用其丰富性。然而,数据科学的最新进展,再加上现有的语音分析方法,使得通过计算从视频中识别重要特征成为可能,同时保持复杂性和细微差别。这些进步将提高研究的可复制性。通过这个项目开发的方法将促进更多的研究人员使用复杂的计算分析与视频数据。这些新方法的应用将有助于提高视频研究的规模和普遍性,并导致新的理论的建立。该研究项目建立在最先进的计算机视觉和语音分析方法的基础上,这些方法对STEM教室中收集的视频数据进行了测试。它是在计算扎根理论方法框架内这样做的,该框架利用了扎根分析方法的解释能力和计算方法的处理能力。具体而言,将产生两种类型的计算分析程序:(a)从STEM教室的视频和音频数据中提取有意义的特征,以及(B)使用这些提取的特征进行探索性模式识别。为了开发这些程序,STEM教室现有的大规模视频数据集将用于测试和完善日益复杂的分析,这些分析也将用于展示这些方法在调查STEM教室的社会和空间维度方面的应用。该项目的重点是集成这些方法以提高其功能,并利用STEM课堂现有的大规模数据集,以便可以在真实数据上测试所开发的方法。这些数据集足够广泛,可以支持对广泛的研究问题的调查,包括关于学生参与纪律实践的高推理问题。最后,通过配对计算和接地分析方法,该项目正在开发的方法,有可能提高和测试的构建有效性的模式中发现的数据。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding Joint Exploration: The Epistemic Positioning in Collaborative Activity in a Secondary Mathematics Classroom
理解联合探索:中学数学课堂协作活动的认知定位
Spin-Ups: How Teachers Scaffold Group Work with Whole Class Prompts and the Messages They Contain
Spin-Ups:教师如何利用全班提示及其包含的信息来搭​​建小组
Advancing computational grounded theory for audiovisual data from mathematics classrooms
推进数学课堂视听数据的计算基础理论
Informing Expert Feature Engineering through Automated Approaches: Implications for Coding Qualitative Classroom Video Data
通过自动化方法为专家特征工程提供信息:对定性课堂视频数据编码的影响
Tracking Individuals in Classroom Videos via Post-processing OpenPose Data
通过后处理 OpenPose 数据跟踪课堂视频中的个人
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christina Krist其他文献

Combining Machine Learning and Qualitative Methods to Elaborate Students’ Ideas About the Generality of their Model-Based Explanations
结合机器学习和定性方法来阐述学生关于基于模型的解释的普遍性的想法
Correction to: Expanding the interpretive functions of framing for understanding marginalized students’ participation in collaboration and learning
  • DOI:
    10.1007/s11422-022-10139-y
  • 发表时间:
    2022-09-24
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Soo‑Yean Shim;Christina Krist
  • 通讯作者:
    Christina Krist
Understanding Joint Exploration: the Epistemic Positioning Underlying Collaborative Activity in a Secondary Mathematics Classroom
Supplemental Material for Examining How Classroom Communities Developed Practice-Based Epistemologies for Science Through Analysis of Longitudinal Video Data
用于检查课堂社区如何通过纵向视频数据分析开发基于实践的科学认识论的补充材料
  • DOI:
    10.1037/edu0000417.supp
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christina Krist
  • 通讯作者:
    Christina Krist
Examining how classroom communities developed practice-based epistemologies for science through analysis of longitudinal video data.
检查课堂社区如何通过分析纵向视频数据来发展基于实践的科学认识论。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christina Krist
  • 通讯作者:
    Christina Krist

Christina Krist的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christina Krist', 18)}}的其他基金

A Professional Development Model for High School Teachers to Adapt Curricula toward Students' Knowledges and Resources
高中教师根据学生知识和资源调整课程的专业发展模式
  • 批准号:
    2300743
  • 财政年份:
    2023
  • 资助金额:
    $ 131.39万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
  • 批准号:
    10096988
  • 财政年份:
    2024
  • 资助金额:
    $ 131.39万
  • 项目类别:
    EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 131.39万
  • 项目类别:
    EU-Funded
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 131.39万
  • 项目类别:
    EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 131.39万
  • 项目类别:
    Collaborative R&D
Computational Tropical Geometry and its Applications
计算热带几何及其应用
  • 批准号:
    MR/Y003888/1
  • 财政年份:
    2024
  • 资助金额:
    $ 131.39万
  • 项目类别:
    Fellowship
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
  • 批准号:
    EP/X033244/1
  • 财政年份:
    2024
  • 资助金额:
    $ 131.39万
  • 项目类别:
    Research Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 131.39万
  • 项目类别:
    Standard Grant
MFB: Better Homologous Folding using Computational Linguistics and Deep Learning
MFB:使用计算语言学和深度学习更好的同源折叠
  • 批准号:
    2330737
  • 财政年份:
    2024
  • 资助金额:
    $ 131.39万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 131.39万
  • 项目类别:
    Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
  • 批准号:
    2349174
  • 财政年份:
    2024
  • 资助金额:
    $ 131.39万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了