DMREF/Collaborative Research: Conductive Protein Nanowires as Next Generation Polymer Nanocomposite Fillers

DMREF/合作研究:导电蛋白纳米线作为下一代聚合物纳米复合填料

基本信息

  • 批准号:
    1921871
  • 负责人:
  • 金额:
    $ 31.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Stretchable electronics have the potential to enable new innovations in technologies for communications, healthcare, security and beyond. Soft-filler, soft-matrix nanocomposites are desired for most stretchable electronics applications. Conventional nanocomposites embed thin, hard, and brittle conductive materials such as metal nanowires or carbon nanotubes into stretchable elastic polymers, which provide electronic function, but fail during stretching cycles due mechanical mismatch. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports research for the understanding, development and manufacture of a new class of soft electronics. This work is a collaborative computational-experimental research approach to understanding the fundamental processing-microstructure-property relationships in conductive protein nanowires, and to design nanoscale protein wires to be highly conductive, mechanically soft fillers that match the host polymer properties to create a superior nanocomposite. Calculations of protein-polymer interactions will inform the synthesis and fabrication of protein-based nanocomposites with enhanced elasticity and conductivity, which will be confirmed by advanced microscopy, electronic, and mechanical testing. This research merges disciplines including microbiology, polymer chemistry, materials processing, electronics, and molecular modeling in a powerful feedback loop. This award also supports educational activities which emphasize participation from groups traditionally underrepresented in STEM, including a multi-day workshop series on innovation, team building, work-life balance, and entrepreneurship through which participants gain the confidence and skills necessary to succeed as scientists, engineers, and entrepreneurs, thus promoting future economic and societal advancement. This work has the potential to bring the U.S. to the forefront of flexible electronics development, while training the next generation workforce to maintain this competitive advantage.Advancing soft electronics requires a nascent class of filler that exhibits high conductivity yet remains chemically and mechanically compatible with the host matrix. Conductive protein nanowires or pili function as the conducting element of protein-based soft electronics. Molecular simulations with coarse-grained models will survey the interplay of pili amino acid sequences and exposed surface peptide residues with soft materials chemistry to create a data-rich system that establishes foundational design principles for pili fillers in soft polymer matrices. The inherent aqueous dispersion properties of conductive pili enable the design, characterization, and production of both bulk pili-polymer nanocomposites and electrospun pili-polymer nanofiber mats with well-distributed filler. Advanced electron and scanning probe microscopy will interrogate the structural and electronic properties of the pili and provide a feedback loop that refines the molecular models. Directed agglomeration of pili into bundles and electrospun pili-elastomer fibers will also enable studies on the scalability of this new nanocomposite platform. Molecular models will ultimately unveil surface peptide sequences that improve processability and functionality of new pili strains and pili-polymer nanocomposites that are validated by rheology, microscopy, transport, and tensile testing methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可伸展电子产品有潜力为通信、医疗保健、安全等领域的技术带来新的创新。软填料、软基质纳米复合材料是大多数可拉伸电子应用所期望的。传统的纳米复合材料将薄、硬、脆的导电材料如金属纳米线或碳纳米管嵌入可拉伸的弹性聚合物中,其提供电子功能,但由于机械失配而在拉伸循环期间失效。设计材料革命和工程我们的未来(DMREF)奖支持研究的理解,开发和制造一个新的软电子类。这项工作是一个合作的计算-实验研究方法,以了解基本的加工-微观结构-性能关系的导电蛋白质纳米线,并设计纳米级蛋白质线是高导电性,机械柔软的填料,匹配的主体聚合物的性能,创造一个上级纳米复合材料。 蛋白质-聚合物相互作用的计算将为基于蛋白质的纳米复合材料的合成和制造提供信息,这些纳米复合材料具有增强的弹性和导电性,这将通过先进的显微镜、电子和机械测试来证实。这项研究将微生物学、高分子化学、材料加工、电子学和分子建模等学科融合在一个强大的反馈回路中。该奖项还支持教育活动,强调传统上在STEM中代表性不足的群体的参与,包括关于创新,团队建设,工作与生活平衡和创业精神的多日系列研讨会,通过这些研讨会,参与者获得了成功成为科学家,工程师和企业家所需的信心和技能,从而促进未来的经济和社会进步。这项工作有可能使美国走在柔性电子产品开发的最前沿,同时培训下一代劳动力以保持这种竞争优势。推进软电子产品需要一种新兴的填料,这种填料具有高导电性,但仍保持与基质的化学和机械兼容性。导电蛋白质纳米线或皮利的功能作为蛋白质为基础的软电子的导电元件。粗粒度模型的分子模拟将调查皮利氨基酸序列和暴露的表面肽残基与软材料化学的相互作用,以创建一个数据丰富的系统,建立软聚合物基质中皮利填料的基本设计原则。导电皮利的固有水分散体性质使得能够设计、表征和生产具有均匀分布的填料的本体皮利-聚合物纳米复合材料和电纺皮利-聚合物微球。先进的电子和扫描探针显微镜将询问皮利的结构和电子特性,并提供一个反馈回路,完善分子模型。将皮利定向凝聚成束和静电纺丝的皮利-弹性体纤维也将使得能够对这种新的纳米复合材料平台的可扩展性进行研究。分子模型将最终揭示表面肽序列,改善新的皮利菌株和菌毛聚合物纳米复合材料的加工性和功能性,这些菌株和复合材料通过流变学、显微镜、运输和拉伸测试方法进行验证。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semi-supervised machine learning workflow for analysis of nanowire morphologies from transmission electron microscopy images
  • DOI:
    10.1039/d2dd00066k
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shizhao Lu;Brian Montz;T. Emrick;A. Jayaraman
  • 通讯作者:
    Shizhao Lu;Brian Montz;T. Emrick;A. Jayaraman
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arthi Jayaraman其他文献

Machine learning for analyses and automation of structural characterization of polymer materials
用于聚合物材料结构表征的分析和自动化的机器学习
  • DOI:
    10.1016/j.progpolymsci.2024.101828
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    26.100
  • 作者:
    Shizhao Lu;Arthi Jayaraman
  • 通讯作者:
    Arthi Jayaraman
Machine learning for analyzing atomic force microscopy (AFM) images generated from polymer blends
用于分析由聚合物共混物生成的原子力显微镜(AFM)图像的机器学习
  • DOI:
    10.1039/d4dd00215f
  • 发表时间:
    2024-10-23
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Aanish Paruchuri;Yunfei Wang;Xiaodan Gu;Arthi Jayaraman
  • 通讯作者:
    Arthi Jayaraman

Arthi Jayaraman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arthi Jayaraman', 18)}}的其他基金

Development of Coarse-Grained Models and Computational Approaches for Studying Structure in Solutions of Cellulose Derivatives
研究纤维素衍生物溶液结构的粗粒度模型和计算方法的开发
  • 批准号:
    2105744
  • 财政年份:
    2021
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Continuing Grant
NRT- HDR: Computing and Data Science Training for Materials Innovation, Discovery, Analytics
NRT- HDR:材料创新、发现、分析的计算和数据科学培训
  • 批准号:
    2125703
  • 财政年份:
    2021
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Continuing Grant
Reverse engineering methods for elucidating the molecular assembly mechanisms of thermoresponsive peptide-based conjugates: computation and experiment
阐明温敏肽缀合物分子组装机制的逆向工程方法:计算和实验
  • 批准号:
    2023668
  • 财政年份:
    2020
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Standard Grant
Collaborative Research: NSCI Framework: Software for Building a Community-Based Molecular Modeling Capability Around the Molecular Simulation Design Framework (MoSDeF)
合作研究:NSCI 框架:围绕分子模拟设计框架 (MoSDeF) 构建基于社区的分子建模能力的软件
  • 批准号:
    1835613
  • 财政年份:
    2018
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Standard Grant
Understanding Molecular Driving Forces to Tailor Macromolecular Materials with Dual-Thermoresponsive Behavior
了解分子驱动力以定制具有双热响应行为的高分子材料
  • 批准号:
    1703402
  • 财政年份:
    2017
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Continuing Grant
Development of Molecular Simulation Techniques for Probing Solvent Effects in Polymer Films during Solvent Vapor Annealing
溶剂蒸气退火过程中探测聚合物薄膜中溶剂效应的分子模拟技术的发展
  • 批准号:
    1609543
  • 财政年份:
    2016
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Interface-promoted Assembly and Disassembly Processes for Rapid Manufacture and Transport of Complex Hybrid Nanomaterials
DMREF:合作研究:用于快速制造和运输复杂混合纳米材料的界面促进的组装和拆卸过程
  • 批准号:
    1629156
  • 财政年份:
    2016
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Standard Grant
Collaborative Research: An Experimental/Theoretical Program on Reconfigured Polycationic Architectures for Improved Gene Therapy
合作研究:用于改进基因治疗的重构聚阳离子结构的实验/理论计划
  • 批准号:
    1460380
  • 财政年份:
    2014
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Experimental/Theoretical Program on Reconfigured Polycationic Architectures for Improved Gene Therapy
合作研究:用于改进基因治疗的重构聚阳离子结构的实验/理论计划
  • 批准号:
    1206894
  • 财政年份:
    2012
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Continuing Grant
Collaborative Research: Designing Multivalent Ligands for Plasmid DNA Purification
合作研究:设计用于质粒 DNA 纯化的多价配体
  • 批准号:
    1066998
  • 财政年份:
    2011
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 31.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了