DMREF/Collaborative Research: DNA-based Sensing, Communicating, and Phase-Separating Materials

DMREF/合作研究:基于 DNA 的传感、通信和相分离材料

基本信息

  • 批准号:
    1921955
  • 负责人:
  • 金额:
    $ 48.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Robotic materials are an emerging class of materials that integrate actuation, sensing, communication, and computing functions. Examples include artificial skins with embedded electronics for sensing, and composites with adaptive texture morphing for camouflage. While there has been significant progress in developing macroscopic robotic materials, integrating robotic functions at the nano to microscale remains a challenge. DNA is as an excellent candidate for creating such robotic nanomaterials because it enables fabrication of nanostructures with unprecedented complex geometry and reconfigurability. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports fundamental research to enable development of robotic DNA materials with sensing, communicating, and phase separating functions, integrating multidisciplinary expertise in DNA nanotechnology, single molecule measurements, and molecular modeling. The team will create DNA nanostructures that sense the local environment and assemble those structures into larger systems that transmit signals or exhibit collective behaviors. This will enable materials that change their structure, adapt their properties, or modify their environment in response to external triggers, which could have a range of applications in nanomanufacturing, biological sensing, energy harvesting or storage, lab-on-a-chip systems, and drug delivery. This project will also provide unique training opportunities to graduate and undergraduate students in DNA nanotechnology, molecular robotics, single-molecule measurements, and multi-scale modeling. The researchers will organize workshops to facilitate sharing of new materials design and modeling methods and develop curricula in robotic nanomaterials. Furthermore, this project's findings will be integrated into outreach programs in Central Ohio and North Carolina to generate interest in science and engineering from the next generation workforce.Robotic materials that integrate sensing, actuation, and communication and processing of information at nano- to microscales can provide many technological benefits to society, with applications ranging from nanomanufacturing to medicine. This research investigates the forces, signals, and mechanisms that enable the development of DNA-based robotic materials that sense forces under various loading conditions, communicate signals over long distances, and exhibit phase separating functionalities. To achieve these functions, the team will leverage the well-defined nanoscale geometry and dynamic properties of DNA nanostructures and the specificity and programmability of DNA binding interactions. Multi-scale molecular modeling methods will guide the design of DNA devices with targeted structural, mechanical, and dynamic properties with feedback from single molecule characterization methods. The team will create materials via hierarchical self-assembly that leverage individual device properties and interactions between devices to expand sensing capabilities, transmit signals via propagated conformational changes, and exhibit collective behaviors driven by local interactions. This will provide a foundation to develop new and complex robotic materials from the nano- to micron-scale that operate at room temperature in aqueous environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器人材料是一种集驱动、传感、通信和计算功能于一体的新兴材料。例如,带有用于传感的嵌入式电子设备的人造皮肤,以及用于伪装的具有自适应纹理变形的复合材料。虽然在开发宏观机器人材料方面取得了重大进展,但将机器人功能从纳米级整合到微米级仍然是一个挑战。DNA是制造这种机器人纳米材料的极佳候选者,因为它能够制造出具有前所未有的复杂几何形状和可重构性的纳米结构。这一设计材料革新和设计我们的未来(DMREF)奖支持基础研究,以支持开发具有传感、通信和相分离功能的机器人DNA材料,整合DNA纳米技术、单分子测量和分子建模方面的多学科专业知识。该团队将创造能够感知当地环境的DNA纳米结构,并将这些结构组装成传递信号或展示集体行为的更大系统。这将使材料能够根据外部触发改变其结构、调整其性质或改变其环境,这可能在纳米制造、生物传感、能量收集或存储、芯片实验室系统和药物输送方面具有广泛的应用。该项目还将在DNA纳米技术、分子机器人、单分子测量和多尺度建模方面为研究生和本科生提供独特的培训机会。研究人员将组织研讨会,以促进新材料设计和建模方法的分享,并制定机器人纳米材料的课程。此外,该项目的发现将被整合到俄亥俄州中部和北卡罗来纳州的推广项目中,以激发下一代劳动力对科学和工程的兴趣。集纳米到微米级的传感、驱动、通信和信息处理为一体的机器人材料可以为社会提供许多技术好处,应用范围从纳米制造到医学。这项研究研究力、信号和机制,使基于DNA的机器人材料的开发能够在各种载荷条件下感知力,远距离通信信号,并展示相分离功能。为了实现这些功能,该团队将利用DNA纳米结构定义良好的纳米级几何和动态特性,以及DNA结合相互作用的特异性和可编程性。多尺度分子模拟方法将通过单分子表征方法的反馈来指导具有目标结构、力学和动力学性质的DNA器件的设计。该团队将通过分层自组装来创建材料,利用单个设备的属性和设备之间的交互来扩展传感能力,通过传播的构象变化传输信号,并展示由本地交互驱动的集体行为。这将为开发从纳米到微米级的新型复杂机器人材料提供基础,这些材料可以在室温下在水环境中运行。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Free energy landscape of salt-actuated reconfigurable DNA nanodevices
  • DOI:
    10.1093/nar/gkz1137
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Ze Shi;G. Arya
  • 通讯作者:
    Ze Shi;G. Arya
Integrated computer-aided engineering and design for DNA assemblies
  • DOI:
    10.1038/s41563-021-00978-5
  • 发表时间:
    2021-04-19
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Huang, Chao-Min;Kucinic, Anjelica;Castro, Carlos E.
  • 通讯作者:
    Castro, Carlos E.
DNA origami tubes with reconfigurable cross-sections
具有可重构横截面的 DNA 折纸管
  • DOI:
    10.1039/d2nr05416g
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Kucinic, Anjelica;Huang, Chao-Min;Wang, Jingyuan;Su, Hai-Jun;Castro, Carlos E.
  • 通讯作者:
    Castro, Carlos E.
Thermally reversible pattern formation in arrays of molecular rotors
分子转子阵列中热可逆图案的形成
  • DOI:
    10.1039/d2nr05813h
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    DeLuca, Marcello;Pfeifer, Wolfgang G.;Randoing, Benjamin;Huang, Chao-Min;Poirier, Michael G.;Castro, Carlos E.;Arya, Gaurav
  • 通讯作者:
    Arya, Gaurav
Binding kinetics of harmonically confined random walkers
谐波约束随机游走者的结合动力学
  • DOI:
    10.1103/physreve.105.044136
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Sensale, Sebastian;Sharma, Pranav;Arya, Gaurav
  • 通讯作者:
    Arya, Gaurav
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gaurav Arya其他文献

End-to-end Nanophotonics Inverse Design for Computational Imaging
计算成像的端到端纳米光子学逆向设计
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zin Lin;Gaurav Arya;William F. Li;C. Roques;R. Pestourie;Zhaoyi Li;F. Capasso;M. Soljačić;Steven G. Johnson
  • 通讯作者:
    Steven G. Johnson
Understanding the Surface and Interface Properties of Electrode Materials in Alkali-ion Batteries : A Combination of Experimental and Computational Studies
了解碱离子电池电极材料的表面和界面特性:实验和计算研究的结合
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gaurav Arya;Renkun Chen;Miaofang Chi;Eric Fullerton;John Weare
  • 通讯作者:
    John Weare
Dynamic Interrogation of a Viral DNA Packaging Motor Complex
  • DOI:
    10.1016/j.bpj.2019.11.2842
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Joshua Pajak;Erik Dill;Mark A. White;Paul Jardine;Marc C. Morais;Gaurav Arya
  • 通讯作者:
    Gaurav Arya
Gradient Estimation via Differentiable Metropolis-Hastings
通过可微的 Metropolis-Hastings 进行梯度估计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gaurav Arya;Moritz Schauer;Ruben Seyer
  • 通讯作者:
    Ruben Seyer
Understanding Photonic Band Gaps via Symmetry and Perturbation Theory
通过对称性和微扰理论理解光子带隙
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gaurav Arya
  • 通讯作者:
    Gaurav Arya

Gaurav Arya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gaurav Arya', 18)}}的其他基金

DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
  • 批准号:
    2323969
  • 财政年份:
    2023
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了