DMREF: Collaborative Research: Fundamentals of Short-Range Order-Assisted Alloy Design: Thermodynamics, Kinetics, Mechanics
DMREF:协作研究:短程有序辅助合金设计的基础:热力学、动力学、力学
基本信息
- 批准号:1922206
- 负责人:
- 金额:$ 132.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is well known that the ordering of atoms at the nanoscale dictates the properties and performance of materials, but knowledge of the quantitative relationships among properties, performance and structure - in particular the short-range ordering of atoms - is lacking for many structural alloys. Knowledge of these relationships has the potential to enable new high-strength, corrosion-resistant materials for use in transportation, energy, and infrastructure applications. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports research to develop an improved fundamental understanding of short-range ordering, in order to identify guidelines for the design of new metallic materials with superior properties. Alloys with short-range order have characteristics of hard, but brittle intermetallics in the short-range, but also of soft pure metal or solid solutions, in the medium- to long-range. Despite classical understanding that suggests otherwise, there is increasing evidence that shows that short-range ordering can lead to unexpected improvements in mechanical properties. A short-range order-assisted alloy design concept will be explored as a new route to overcome the fundamental strength-toughness limitations in physical metallurgy. The overall goal of this research is to establish the fundamental understanding and the generic design rules that enable effective utilization of short-range order to realize damage-resistance in extreme environments. Concepts from this research are incorporated into educational modules in place at local science museums, and further educational benefits will stem from this work through the active participation of student researchers.This work aims to unravel what controls short-range order stabilities and characteristics, understand fundamentals of short-range order-assisted deformation micro/nano-mechanics, and design novel complex concentrated alloys that overcome current strength and toughness limits. It is necessary to understand how specific aspects of short-range order chemistry, size, and strength can be controlled, and how such variations would influence the interaction with dislocations. To this end, one of the most important challenges is regarding characterization. The typical size of the short-range ordered zones reaches the resolution limits of the conventional microscopy and diffraction tools such as the transmission electron microscopy, the atom probe tomography, and the x-ray diffraction. The research team will employ a novel, multi-pronged approach, combining theoretical modeling (ab-initio density functional theory calculation, Monte-Carlo simulation, and molecular dynamics), metallurgical processing (fabrication & testing), and atomically-resolved advanced structural characterization techniques (resonant x-ray scattering, in-situ scanning electron microscopy, and revolving scanning transmission electron microscopy) in order to overcome this challenge, and to link atomic-scale short-range order-characteristics to engineering properties at the macro-scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
众所周知,原子在纳米尺度上的有序性决定了材料的性质和性能,但对于许多结构合金来说,缺乏关于性质、性能和结构之间的定量关系的知识,特别是原子的短程有序性。对这些关系的了解有可能使新的高强度、耐腐蚀材料用于交通、能源和基础设施应用。这项旨在革新和设计我们的未来的设计材料奖(DMREF)支持研究,以提高对短程排序的基本理解,从而确定具有优异性能的新金属材料的设计指南。具有短程有序的合金在短程范围内具有硬而脆的金属间化合物的特征,在中长程范围内也具有软的纯金属或固溶体的特点。尽管经典的理解表明并非如此,但越来越多的证据表明,短程有序可以导致机械性能的意想不到的改善。探索一种短程有序辅助合金设计的概念,作为克服物理冶金中基本的强度-韧性限制的新途径。这项研究的总体目标是建立基本的理解和通用的设计规则,使之能够有效地利用短程命令来实现极端环境下的抗毁伤。这项研究的概念被纳入到当地科学博物馆的教学模块中,通过学生研究人员的积极参与,这项工作将产生进一步的教育效益。这项工作旨在揭示是什么控制着短程有序稳定性和特征,了解短程有序辅助变形微/纳米力学的基本原理,并设计新型复杂的浓缩合金,以克服当前的强度和韧性限制。有必要了解如何控制短程有序化学、大小和强度的特定方面,以及这些变化将如何影响与位错的相互作用。为此,最重要的挑战之一是如何定性。短程有序带的典型尺寸达到了常规显微镜和衍射工具如透射电子显微镜、原子探针层析成像和X射线衍射的分辨率极限。研究团队将采用一种新颖的多管齐下的方法,结合理论建模(从头算密度泛函理论计算、蒙特卡罗模拟和分子动力学)、冶金加工(制造和放大测试)和原子分辨的先进结构表征技术(共振X射线散射、原位扫描电子显微镜和旋转扫描电子显微镜),以克服这一挑战,并将原子尺度的短程有序特征与宏观尺度的工程特性联系起来。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Element-resolved local lattice distortion in complex concentrated alloys: An observable signature of electronic effects
- DOI:10.1016/j.actamat.2021.117135
- 发表时间:2021-07
- 期刊:
- 影响因子:9.4
- 作者:Hyunseok Oh;Khorgolkhuu Odbadrakh;Y. Ikeda;Sai Mu;F. Körmann;Cheng-Jun Sun;Hehsang Ahn;K. Yoon;D. Ma;C. Tasan;T. Egami;E. Park
- 通讯作者:Hyunseok Oh;Khorgolkhuu Odbadrakh;Y. Ikeda;Sai Mu;F. Körmann;Cheng-Jun Sun;Hehsang Ahn;K. Yoon;D. Ma;C. Tasan;T. Egami;E. Park
High accuracy neural network interatomic potential for NiTi shape memory alloy
- DOI:10.1016/j.actamat.2022.118217
- 发表时间:2022-07
- 期刊:
- 影响因子:9.4
- 作者:Hao Tang;Yin Zhang;Qingjie Li;Haowei Xu;Yuchi Wang;Yunzhi Wang;Ju Li
- 通讯作者:Hao Tang;Yin Zhang;Qingjie Li;Haowei Xu;Yuchi Wang;Yunzhi Wang;Ju Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cemal Tasan其他文献
Cemal Tasan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 132.31万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 132.31万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 132.31万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 132.31万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 132.31万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 132.31万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 132.31万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 132.31万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 132.31万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 132.31万 - 项目类别:
Standard Grant