Hybridizing Data and Model Driven Approaches for Proactive Production Control
混合数据和模型驱动方法进行主动生产控制
基本信息
- 批准号:1922739
- 负责人:
- 金额:$ 40.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award will contribute to the national prosperity by investigating a framework for factory-level production control using real-time equipment-level sensing data. Rapid advances in sensor technology, computer-controlled processes, high-performance computing, and internet-of-things (IoT) have the potential to improve the productivity of U.S. manufacturing significantly. However, current production systems remain predominately retrospective and responsive to adverse events because real-time analysis has not been sufficiently integrated in proactive decision support. This award investigates an approach based on hybridizing data-driven statistical methods and with product flow models to address the key challenges in real-time sensing, performance prediction, and proactive control of production systems. The knowledge developed from this research will enhance the understanding of the fundamental principles governing manufacturing systems operations from both theoretical and practical perspectives. The research is integrated with an education plan to enhance education and outreach activities in the minority and underrepresented groups.This award supports fundamental research to advance the state-of-the-art in prognostics, data fusion, and real-time production controls at both process and system levels in production environments. The research will investigate a new data-driven approach that combines Bayesian generative models, tensor data analytics, and data-fusion for prognostics to determine a process-level health condition index based on heterogeneous sensing data at different sampling rates. Process-specific health condition information will be integrated with system-level stochastic models for production performance prediction by synthesizing the input from sensor measurements and the output of process-level prediction. Finally, a data-driven sequential decision-making problem will be formulated to derive adaptive control actions that optimize the performance at both system and process levels in real-time. The developed methodology will be tested and validated using data from a small-scale university lab and collaborating industry partners, as well as open data sets published by the National Institute of Standards and Technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将通过研究使用实时设备级传感数据的工厂级生产控制框架,为国家繁荣做出贡献。传感器技术、计算机控制流程、高性能计算和物联网(IoT)的快速发展有可能显著提高美国制造业的生产力。然而,目前的生产系统仍然主要是回顾性的,并对不良事件作出反应,因为实时分析还没有充分集成在积极的决策支持。该奖项研究了一种基于混合数据驱动的统计方法和产品流模型的方法,以解决生产系统的实时传感,性能预测和主动控制方面的关键挑战。从本研究中开发的知识将提高从理论和实践的角度对管理制造系统操作的基本原则的理解。该研究与教育计划相结合,以加强少数民族和代表性不足的群体的教育和推广活动。该奖项支持基础研究,以促进生产环境中过程和系统层面的自动化、数据融合和实时生产控制的最新水平。该研究将研究一种新的数据驱动方法,该方法将贝叶斯生成模型,张量数据分析和数据融合相结合,以确定基于不同采样率的异构传感数据的过程级健康状况指数。通过综合传感器测量的输入和过程级预测的输出,特定于过程的健康状况信息将与系统级随机模型集成,用于生产性能预测。最后,将制定一个数据驱动的顺序决策问题,以获得自适应控制行动,优化性能在系统和过程水平的实时。 开发的方法将使用来自小型大学实验室和合作行业伙伴的数据以及美国国家标准与技术研究所发布的开放数据集进行测试和验证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep multistage multi-task learning for quality prediction of multistage manufacturing systems
- DOI:10.1080/00224065.2021.1903822
- 发表时间:2021-04
- 期刊:
- 影响因子:2.5
- 作者:Hao Yan;Nurrettin Dorukhan Sergin;William A. Brenneman;Steve J. Lange;Shan Ba
- 通讯作者:Hao Yan;Nurrettin Dorukhan Sergin;William A. Brenneman;Steve J. Lange;Shan Ba
Simulation-based Real-time Production Control with Different Classes of Residence Time Constraints
- DOI:10.1109/case49997.2022.9926676
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Feifan Wang;Feng Ju
- 通讯作者:Feifan Wang;Feng Ju
Adaptive Change Point Monitoring for High-Dimensional Data
- DOI:10.5705/ss.202020.0438
- 发表时间:2021-01
- 期刊:
- 影响因子:1.4
- 作者:Teng Wu;Runmin Wang;Hao Yan;Xiaofeng Shao
- 通讯作者:Teng Wu;Runmin Wang;Hao Yan;Xiaofeng Shao
Toward a better monitoring statistic for profile monitoring via variational autoencoders
- DOI:10.1080/00224065.2021.1903821
- 发表时间:2019-11
- 期刊:
- 影响因子:2.5
- 作者:N. Sergin;Hao Yan
- 通讯作者:N. Sergin;Hao Yan
Dynamic material deposition control for large-scale additive manufacturing
- DOI:10.1080/24725854.2021.1956702
- 发表时间:2021-09
- 期刊:
- 影响因子:2.6
- 作者:Sepehr Fathizadan;Feng Ju;Feifan Wang;Kyle Rowe;Nils Hofmann
- 通讯作者:Sepehr Fathizadan;Feng Ju;Feifan Wang;Kyle Rowe;Nils Hofmann
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Ju其他文献
MetOrigin: discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome.
MetOrigin:区分微生物代谢物的起源,对肠道微生物组和代谢组进行综合分析。
- DOI:
10.1002/imt2.10 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Gang Yu;Cuifang Xu;Danni Zhang;Feng Ju;Yan Ni - 通讯作者:
Yan Ni
Real-time control for large scale additive manufacturing using thermal images
使用热图像实时控制大规模增材制造
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Feifan Wang;Feng Ju;Kyle Rowe;Nils Hofmann - 通讯作者:
Nils Hofmann
IMPROVING BATTERY MANUFACTURING THROUGH QUALITY AND PRODUCTIVITY BOTTLENECK INDICATORS
通过质量和生产力瓶颈指标改善电池制造
- DOI:
10.1002/9781119060741.ch2 - 发表时间:
2016 - 期刊:
- 影响因子:2
- 作者:
Feng Ju;Jingshan Li;G. Xiao;N. Huang;J. Arinez;S. Biller;W. Deng - 通讯作者:
W. Deng
POWER MANAGEMENT CONTROL STRATEGY OF BATTERY‐SUPERCAPACITOR HYBRID ENERGY STORAGE SYSTEM USED IN ELECTRIC VEHICLES
电动汽车电池-超级电容混合储能系统功率管理控制策略
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Qiao Zhang;W. Deng;Jian Wu;Feng Ju;Jingshan Li - 通讯作者:
Jingshan Li
Exploiting predatory bacteria as biocontrol agents across ecosystems
利用捕食性细菌作为跨生态系统的生物防治剂
- DOI:
10.1016/j.tim.2023.10.005 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:14.900
- 作者:
Lu Zhang;Lingyun Guo;Zhongli Cui;Feng Ju - 通讯作者:
Feng Ju
Feng Ju的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Ju', 18)}}的其他基金
CRISP Type 2/Collaborative Research: Harnessing Interdependency for Resilience: Creating an "Energy Sponge" with Cloud Electric Vehicle Sharing
CRISP 类型 2/合作研究:利用相互依赖性实现弹性:通过云电动汽车共享创建“能源海绵”
- 批准号:
1638213 - 财政年份:2016
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23K25946 - 财政年份:2024
- 资助金额:
$ 40.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 40.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Integrating theory and data to model evolution under a changing climate
整合理论和数据来模拟气候变化下的进化
- 批准号:
DP230102431 - 财政年份:2024
- 资助金额:
$ 40.07万 - 项目类别:
Discovery Projects
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
- 批准号:
2337943 - 财政年份:2024
- 资助金额:
$ 40.07万 - 项目类别:
Continuing Grant
CAREER: CAS-Climate: Multiscale Data and Model Synthesis Informed Approach for Assessing Climate Resilience of Crop Production Systems
职业:CAS-气候:用于评估作物生产系统气候适应能力的多尺度数据和模型综合知情方法
- 批准号:
2339529 - 财政年份:2024
- 资助金额:
$ 40.07万 - 项目类别:
Continuing Grant
Data-driven model links BMIz to gene expression in pediatric asthma
数据驱动模型将 BMIz 与小儿哮喘基因表达联系起来
- 批准号:
493135 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23H01250 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and clinical application of AI model to support diagnosis of dementia using medical big data from electronic medical records
利用电子病历中的医疗大数据支持痴呆症诊断的人工智能模型的开发和临床应用
- 批准号:
22KJ3211 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Using a weather model and geologic data to test tectonic mechanisms in an intercontinental setting: The Altai Mountains of Central Asia
合作研究:利用天气模型和地质数据测试洲际环境中的构造机制:中亚阿尔泰山脉
- 批准号:
2316735 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant