AMPS: Model Reduction for Analysis, Identification, and Optimal Design of Power Networks
AMPS:用于电力网络分析、识别和优化设计的模型简化
基本信息
- 批准号:1923221
- 负责人:
- 金额:$ 37.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Power networks are a rich source of dynamical systems that play a critical role in the infrastructure of modern society. Costly computer simulations are needed to model the impact of virtually any planning, monitoring, control and stability analysis task of the power grid, due to its scale and complexity. Such simulations become only more complicated with the growth of renewable energy generation such as solar and wind. To expedite dynamic simulation and to aid the design and optimization of power grids, this project pursues a suite of new model reduction algorithms tailored to the special considerations of power network modeling. The proposed methods will take advantage of the large volume of observation data that is available, moving toward algorithms for reliably estimating the state of the grid. This project supports 2 graduate students each year of the 3 year project.This project will develop and analyze new approaches to model reduction that are specially adapted to the needs of power grid operation and analysis. The project will pursue both projection-based methods and data-driven algorithms, considering nonlinear power network equations and their linearization. The resulting methods seek reliable, high-fidelity, low-order models that preserve critical physics-based structural features and parametric dependence germane to power grid dynamics. Data-driven modeling frameworks will be refined to allow for rapid model updating using near real-time observation streams from phasor measurement units. Reduced models will also contribute to the development of cost-effective power grid optimization tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电力网络是动力系统的丰富来源,在现代社会的基础设施中发挥着关键作用。由于电网的规模和复杂性,需要昂贵的计算机模拟来模拟几乎任何电网规划、监测、控制和稳定性分析任务的影响。随着太阳能和风能等可再生能源发电的增长,这种模拟只会变得更加复杂。为了加快动态仿真和帮助电网的设计和优化,本项目追求一套新的模型降阶算法,适合于电力网络建模的特殊考虑。所提出的方法将利用大量可用的观测数据,朝着可靠估计电网状态的算法发展。本项目为期3年,每年资助2名研究生。本项目将开发和分析专门适应电网运行和分析需要的模型简化新方法。该项目将采用基于投影的方法和数据驱动的算法,考虑非线性电力网络方程及其线性化。由此产生的方法寻求可靠的,高保真的,低阶的模型,保持关键的物理为基础的结构特征和参数依赖密切相关的电网动态。将改进数据驱动的建模框架,以便利用相量测量单元的近实时观测流快速更新模型。简化模型还将有助于开发具有成本效益的电网优化工具。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structured vector fitting framework for mechanical systems
机械系统的结构化矢量拟合框架
- DOI:10.1016/j.ifacol.2022.09.089
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Werner, Steffen W.R.;Gosea, Ion Victor;Gugercin, Serkan
- 通讯作者:Gugercin, Serkan
Efficient Topology Design Algorithms for Power Grid Stability
- DOI:10.1109/lcsys.2021.3088888
- 发表时间:2021-03
- 期刊:
- 影响因子:3
- 作者:Siddharth Bhela;Harsha Nagarajan;Deepjyoti Deka;V. Kekatos
- 通讯作者:Siddharth Bhela;Harsha Nagarajan;Deepjyoti Deka;V. Kekatos
Inferring Power System Dynamics From Synchrophasor Data Using Gaussian Processes
- DOI:10.1109/tpwrs.2022.3144935
- 发表时间:2021-05
- 期刊:
- 影响因子:6.6
- 作者:M. Jalali;V. Kekatos;Siddharth Bhela;Hao Zhu;V. Centeno
- 通讯作者:M. Jalali;V. Kekatos;Siddharth Bhela;Hao Zhu;V. Centeno
A Unifying Framework for Interpolatory \({\boldsymbol{\mathcal{L}_2}}\)-Optimal Reduced-Order Modeling
插值({oldsymbol{mathcal{L}_2}})-最优降阶建模的统一框架
- DOI:10.1137/22m1516920
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Mlinarić, Petar;Gugercin, Serkan
- 通讯作者:Gugercin, Serkan
Inferring Power System Frequency Oscillations using Gaussian Processes
- DOI:10.1109/cdc45484.2021.9683760
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:M. Jalali;V. Kekatos;Siddharth Bhela;Hao Zhu
- 通讯作者:M. Jalali;V. Kekatos;Siddharth Bhela;Hao Zhu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Serkan Gugercin其他文献
Interpolatory weighted-H2H2 model reduction
插值加权 H2H2 模型简化
- DOI:
10.1016/j.automatica.2013.01.040 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Branimir Anić;Christopher A. Beattie;Serkan Gugercin;Athanasios C. Antoulas - 通讯作者:
Athanasios C. Antoulas
The AAA framework for modeling linear dynamical systems with quadratic output
用于对具有二次输出的线性动力系统进行建模的 AAA 框架
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ion Victor Gosea;Serkan Gugercin - 通讯作者:
Serkan Gugercin
Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems
- DOI:
10.1016/j.automatica.2012.05.052 - 发表时间:
2012-09-01 - 期刊:
- 影响因子:
- 作者:
Serkan Gugercin;Rostyslav V. Polyuga;Christopher Beattie;Arjan van der Schaft - 通讯作者:
Arjan van der Schaft
Serkan Gugercin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Serkan Gugercin', 18)}}的其他基金
Collaborative Research: Nonlinear Balancing: Reduced Models and Control
合作研究:非线性平衡:简化模型和控制
- 批准号:
2130695 - 财政年份:2022
- 资助金额:
$ 37.65万 - 项目类别:
Standard Grant
Efficient Algorithms for Optimal Control of Time-Periodic and Nonlinear Systems
时间周期和非线性系统最优控制的高效算法
- 批准号:
1819110 - 财政年份:2018
- 资助金额:
$ 37.65万 - 项目类别:
Standard Grant
Interpolatory Model Reduction for the Control of Fluids
流体控制的插值模型简化
- 批准号:
1522616 - 财政年份:2015
- 资助金额:
$ 37.65万 - 项目类别:
Standard Grant
CAREER: Reduced-order Modeling and Controller Design for Large-scale Dynamical Systems via Rational Krylov Methods
职业:通过 Rational Krylov 方法对大型动力系统进行降阶建模和控制器设计
- 批准号:
0645347 - 财政年份:2007
- 资助金额:
$ 37.65万 - 项目类别:
Standard Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Research Grant
Model Reduction Methods for Extended Quantum Systems: Analysis and Applications
扩展量子系统的模型简化方法:分析与应用
- 批准号:
2350325 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Continuing Grant
Developing an HIV, STBBI and Harm Reduction Centred Model of Care for Women and Other Pregnant and Parenting People and Families: Catalyzing a Community-based Research Agenda
为妇女和其他怀孕和育儿人士及家庭制定以艾滋病毒、STBBI 和减少危害为中心的护理模式:促进基于社区的研究议程
- 批准号:
487995 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Operating Grants
Development of a computable general equilibrium model considering innovative carbon dioxide reduction technologies and the application of climate change policy assessment
考虑创新的二氧化碳减排技术和气候变化政策评估的应用,开发可计算的一般均衡模型
- 批准号:
22KJ1905 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
- 批准号:
23K03437 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Demonstration and model construction for reduction of acoustical minor loss using micro fluid device
利用微流体装置减少声学微小损失的演示和模型构建
- 批准号:
23K03653 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical Establishment of Nonlinear Model Reduction Method and Its Application to Motor Analysis
非线性模型降阶方法的理论建立及其在电机分析中的应用
- 批准号:
23KJ1202 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Model Reduction for Control-based Continuation of Complex Nonlinear Structures
复杂非线性结构基于控制的连续性的模型简化
- 批准号:
EP/X026027/1 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Fellowship
Construction of a NET Utilizing Exchange Model Based on the Effect Verification of NET Contributing to the Reduction of Maladjustment Symptoms in University Students
基于NET的效果验证构建NET利用交换模型有助于减少大学生适应不良症状
- 批准号:
23K02997 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model Reduction Methods for Extended Quantum Systems: Analysis and Applications
扩展量子系统的模型简化方法:分析与应用
- 批准号:
2309814 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Continuing Grant