Collaborative Research: Nonlinear Balancing: Reduced Models and Control
合作研究:非线性平衡:简化模型和控制
基本信息
- 批准号:2130695
- 负责人:
- 金额:$ 46.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fast and accurate computer simulation of complex engineering systems is required for real-time control and engineering design. This grant will support research that will advance balanced truncation model reduction for nonlinear systems, a mathematical framework to produce reliable, accurate, and computationally efficient simulators. Despite the theoretical foundations having been laid in the 1990s, computational implementations that scale to the high dimensionality needed for today’s complex engineering systems are lacking to date. This research will overcome this barrier by developing and employing modern high-performance algorithms that exploit the mathematical structure of the equations that have to be solved. The resulting simulators will, for instance, advance the control and operation of satellites through accurate real-time estimation of atmospheric satellite drag; advance the design of aircraft through low-resource computational models that allow for a large number of design iterations; and optimize our cities’ water networks through efficiently simulating water flows and water quality so that pump stations can be scheduled optimally. This will result in greater benefits to society, improvements of civil infrastructure, and contribute to the industrial competitiveness of the United States. This grant will also support science, technology, engineering and mathematics (STEM) workforce training through a workshop at Virginia Tech that targets early-career researchers, as well as through undergraduate research opportunities.This research seeks to develop a new class of reduced-order models and controllers for complex high-dimensional polynomial nonlinear systems via the concept of nonlinear balanced truncation. To date, this framework has not been applied to model reduction for high-dimensional nonlinear systems since solving the Hamilton-Jacobi-Bellman (HJB) equations, which are at the core of the balancing approach, remained infeasible for large-scale systems. Very recent developments in tensor calculus, nonlinear state transformations, and polynomial feedback laws now make the solution to this problem feasible. This project will develop a scalable tensor-based approach to solve the HJB equations to obtain polynomial expansions of the energy functions required for balanced truncation, as well as high-performance algorithms and numerical analysis to analyze the conditioning of the tensorized problems. Moreover, efficient algorithms for parametric nonlinear balancing will be designed by exploiting the structure in parameter space. Additionally, reduced-order nonlinear controllers will be designed using a simultaneous reduction and control framework, which is far superior to the existing reduce-then-control framework. The project will also develop a theory for the robustness of these controllers, and their stabilizing properties when applied to the high-dimensional systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
实时控制和工程设计需要对复杂工程系统进行快速、准确的计算机仿真。这笔赠款将支持研究,将推进非线性系统的平衡截断模型简化,一个数学框架,以产生可靠,准确和计算效率高的模拟器。尽管在20世纪90年代已经奠定了理论基础,但到目前为止,缺乏可扩展到当今复杂工程系统所需的高维的计算实现。这项研究将通过开发和采用现代高性能算法来克服这一障碍,这些算法利用了必须求解的方程的数学结构。例如,由此产生的模拟器将通过对大气层卫星阻力的准确实时估计来推进卫星的控制和操作;通过允许大量设计迭代的低资源计算模型来推进飞机的设计;通过有效模拟水流和水质来优化我们城市的供水网络,以便能够最佳地调度泵站。这将为社会带来更大的利益,改善民用基础设施,并有助于提高美国的工业竞争力。这笔赠款还将支持科学,技术,工程和数学(STEM)的劳动力培训,通过在弗吉尼亚理工大学的一个研讨会,目标是早期的职业研究人员,以及通过本科生的研究机会。这项研究旨在通过非线性平衡截断的概念,为复杂的高维多项式非线性系统开发一类新的降阶模型和控制器。到目前为止,这个框架还没有被应用到高维非线性系统的模型降阶,因为求解Hamilton-Jacobi-Bellman(HJB)方程,这是平衡方法的核心,仍然是不可行的大规模系统。张量演算、非线性状态变换和多项式反馈律的最新发展使这个问题的解决方案变得可行。该项目将开发一种可扩展的基于张量的方法来求解HJB方程,以获得平衡截断所需的能量函数的多项式展开,以及高性能算法和数值分析来分析张量化问题的条件。此外,有效的算法参数非线性平衡将设计利用参数空间中的结构。此外,降阶非线性控制器的设计将使用同时减少和控制框架,这是远远上级现有的减少,然后控制框架。该项目还将开发一个理论的鲁棒性,这些控制器,和他们的稳定性能时,应用到高维systems.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Serkan Gugercin其他文献
Interpolatory weighted-H2H2 model reduction
插值加权 H2H2 模型简化
- DOI:
10.1016/j.automatica.2013.01.040 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Branimir Anić;Christopher A. Beattie;Serkan Gugercin;Athanasios C. Antoulas - 通讯作者:
Athanasios C. Antoulas
The AAA framework for modeling linear dynamical systems with quadratic output
用于对具有二次输出的线性动力系统进行建模的 AAA 框架
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ion Victor Gosea;Serkan Gugercin - 通讯作者:
Serkan Gugercin
Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems
- DOI:
10.1016/j.automatica.2012.05.052 - 发表时间:
2012-09-01 - 期刊:
- 影响因子:
- 作者:
Serkan Gugercin;Rostyslav V. Polyuga;Christopher Beattie;Arjan van der Schaft - 通讯作者:
Arjan van der Schaft
Serkan Gugercin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Serkan Gugercin', 18)}}的其他基金
AMPS: Model Reduction for Analysis, Identification, and Optimal Design of Power Networks
AMPS:用于电力网络分析、识别和优化设计的模型简化
- 批准号:
1923221 - 财政年份:2019
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant
Efficient Algorithms for Optimal Control of Time-Periodic and Nonlinear Systems
时间周期和非线性系统最优控制的高效算法
- 批准号:
1819110 - 财政年份:2018
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant
Interpolatory Model Reduction for the Control of Fluids
流体控制的插值模型简化
- 批准号:
1522616 - 财政年份:2015
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant
CAREER: Reduced-order Modeling and Controller Design for Large-scale Dynamical Systems via Rational Krylov Methods
职业:通过 Rational Krylov 方法对大型动力系统进行降阶建模和控制器设计
- 批准号:
0645347 - 财政年份:2007
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
- 批准号:
2318951 - 财政年份:2024
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
- 批准号:
2318952 - 财政年份:2024
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325172 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325171 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
- 批准号:
2348826 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
2403552 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别:
Continuing Grant
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
- 批准号:
2308639 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
- 批准号:
2308640 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325170 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别:
Standard Grant