HDR DSC: Collaborative Research: Transforming Data Science Education through a Portable and Sustainable Anthropocentric Data Analytics for Community Enrichment Program

HDR DSC:协作研究:通过便携式和可持续的以人类为中心的数据分析来改变数据科学教育,促进社区丰富计划

基本信息

  • 批准号:
    1924278
  • 负责人:
  • 金额:
    $ 72.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project will focus on human-centric analytics, or anthropocentric data analytics, to provide a common ground for beginning studies in data science and to prepare students to address interdisciplinary problems. As one of the most promising subareas of data science, human-centric data analytics either considers humans as the research object or involves humans as the executors over all stages of data analytics. The proposed Anthropocentric Data Analytics for Community Enrichment (ADACE) project will form a three-institution partnership, with University of Tennessee at Chattanooga (UTC) as the coordinating organization, and UTC, Chattanooga State Community College and Howard University as implementing organizations. Together they will address the challenge of developing a large, high-quality workforce skilled in data-related disciplines. This is essential for the United States to maintain its competitiveness in the 21st century. The project aims to establish an interdisciplinary platform with a curriculum that integrates real-world community research projects. In today's increasingly globalized world, data science occupations are essential for sustained social and economic development. Most U.S. colleges and universities are witnessing an increased interest from students in these programs offered by computer science and other related departments. However, a lack of training programs and community engagement through real-life projects makes it difficult to keep students engaged and interested. Limited access to internships can also reduce students' success in data science and may even direct them away from these fields. This project addresses the critical need to attract higher numbers of talented students, to better stimulate students' interest, to increase the retention rates, and to eventually meet the rising workforce demand. The project endeavors to promote undergraduate training in data science. An interdisciplinary and multi-institutional collaboration will strive to establish an infrastructure that accommodates 41 students and spans the entire four years of their college career. The project aspires to enhance current data science and related curricula of the participating institutions, as two of them have data science programs for undergraduate and graduate students. To attract students with a broad range of interests, ADACE will consist of four core modules - mathematics foundation, computational foundation, data science, and data science applications - and integrate multiple interdisciplinary and human-centric community projects. Those projects will feature six areas: (1) human-in-the-loop data integration, (2) visible neural network architecture, (3) human-in-the-loop machine learning, (4) seamless interaction between users and machines, (5) human-oriented topics investigating the behavior of individuals or society, and (6) studies of ethics in terms of both AI scientists/engineers and artificial agents. Participating institutions will have the opportunity to leverage existing relationships with local for- and non-profit organizations to expose students to real-world problems of data science and provide opportunities for networking. Each concentration will be led by a co-principal investigator with expertise in that area, building on their research findings and experience with interdisciplinary collaboration to shape innovative curricula and research projects. Students will have the opportunity to gain knowledge in data science, problem-solving skills, hands-on experience, and rigorous research training through this proposed program. All curricular materials will be designed to be portable, sustainable, and easily disseminated to ensure their expanded impact. They will also be evaluated for measurable outcomes and tailored to include non-traditional students, who form a large portion of the potential data science workforce in the regions surrounding the participating institutions. NSF's Harnessing the Data Revolution Data Science Corps program focuses on building capacity for harnessing the data revolution at the local, state, national, and international levels to help unleash the power of data in the service of science and society. Projects in this program are being jointly funded by the NSF's Harnessing the Data Revolution Big Idea; the Directorate for Computer and Information Science and Engineering, Division of Information and Intelligent Systems; the Directorate for Education and Human Resources, Division of Undergraduate Education; the Directorate for Mathematical and Physical Sciences, Division of Mathematical Sciences; and the Directorate for Social, Behavioral and Economic Sciences, Office of Multidisciplinary Activities and Division of Behavioral and Cognitive Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将专注于以人为中心的分析,或以人为中心的数据分析,为开始数据科学研究提供共同基础,并为学生解决跨学科问题做好准备。作为数据科学中最有前途的子领域之一,以人为中心的数据分析要么将人类视为研究对象,要么将人类作为数据分析各个阶段的执行者。拟议的以人为中心的数据分析促进社区丰富(ADACE)项目将形成三个机构的伙伴关系,田纳西大学查塔努加(UTC)作为协调组织,UTC,查塔努加州立社区学院和霍华德大学作为执行组织。他们将共同应对发展一支在数据相关学科熟练的大型高素质劳动力队伍的挑战。 这对美国在21世纪保持竞争力至关重要。该项目旨在建立一个跨学科平台,其课程整合了现实世界的社区研究项目。在当今日益全球化的世界中,数据科学职业对于社会和经济的可持续发展至关重要。大多数美国学院和大学都见证了学生对计算机科学和其他相关部门提供的这些课程的兴趣越来越大。然而,缺乏培训计划和社区参与,通过现实生活中的项目,很难让学生参与和感兴趣。有限的实习机会也会降低学生在数据科学领域的成功率,甚至可能导致他们远离这些领域。该项目解决了吸引更多有才华的学生的迫切需要,以更好地激发学生的兴趣,提高保留率,并最终满足不断增长的劳动力需求。该项目致力于促进数据科学的本科生培训。一个跨学科和多机构的合作将努力建立一个基础设施,可容纳41名学生,并跨越他们的大学生涯的整个四年。该项目旨在加强参与机构当前的数据科学和相关课程,因为其中两个机构为本科生和研究生提供数据科学课程。为了吸引具有广泛兴趣的学生,ADACE将包括四个核心模块-数学基础,计算基础,数据科学和数据科学应用-并整合多个跨学科和以人为本的社区项目。这些项目将包括六个领域:(1)人在环数据集成,(2)可见神经网络架构,(3)人在环机器学习,(4)用户和机器之间的无缝交互,(5)以人为本的主题,调查个人或社会的行为,以及(6)人工智能科学家/工程师和人工智能代理人的伦理研究。参与机构将有机会利用与当地非营利组织的现有关系,让学生接触数据科学的现实问题,并提供建立网络的机会。每个浓度将由一个共同的主要研究者在该领域的专业知识,他们的研究成果和跨学科合作的经验,塑造创新的课程和研究项目的基础上领导。学生将有机会获得数据科学知识,解决问题的能力,实践经验,并通过这个拟议的计划严格的研究培训。所有课程材料将被设计为便携式,可持续和易于传播,以确保其扩大的影响。他们还将评估可衡量的成果,并针对非传统学生进行定制,这些学生构成了参与机构周围地区潜在数据科学劳动力的很大一部分。NSF的利用数据革命数据科学团计划侧重于在地方,州,国家和国际层面建设利用数据革命的能力,以帮助释放数据的力量,为科学和社会服务。该计划中的项目由NSF的利用数据革命大想法;信息和智能系统部计算机和信息科学与工程局;本科教育部教育和人力资源局;数学科学部数学和物理科学局;该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resource Modeling and Scheduling for Mobile Edge Computing: A Service Provider’s Perspective
  • DOI:
    10.1109/access.2018.2851392
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Shuaishuai Guo;Dalei Wu;Haixia Zhang;D. Yuan
  • 通讯作者:
    Shuaishuai Guo;Dalei Wu;Haixia Zhang;D. Yuan
Assessing the Presence of Intentional Waveform Structure In Preamble-based SEI
评估基于前导码的 SEI 中是否存在有意波形结构
  • DOI:
    10.1109/globecom48099.2022.10001025
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tyler, Joshua H.;Fadul, Mohamed K.M.;Reising, Donald R.;Liang, Yu
  • 通讯作者:
    Liang, Yu
Using a Layered Ensemble of Physics-Guided Graph Attention Networks to Predict COVID-19 Trends
  • DOI:
    10.1080/08839514.2022.2055989
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Connie Sun;Vijayalakshmi K. Kumarasamy;Yu Liang;Dalei Wu;Yingfeng Wang
  • 通讯作者:
    Connie Sun;Vijayalakshmi K. Kumarasamy;Yu Liang;Dalei Wu;Yingfeng Wang
Mining High School Data to Predict and Increase Student Success in College
挖掘高中数据以预测和提高学生在大学的成功
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barczak, Timothy;Jain, Hemant
  • 通讯作者:
    Jain, Hemant
Building a specialized lexicon for breast cancer clinical trial subject eligibility analysis
  • DOI:
    10.1177/1460458221989392
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Jung, Euisung;Jain, Hemant;Gaudioso, Carmelo
  • 通讯作者:
    Gaudioso, Carmelo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Liang其他文献

Binderless zeolite NaX microspheres with enhanced CO2 adsorption selectivity
具有增强 CO2 吸附选择性的无粘合剂 NaX 沸石微球
  • DOI:
    10.1016/j.micromeso.2018.12.002
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Yan Baili;Yu Shuang;Zeng Changfeng;Yu Liang;Wang Chongqing;Zhang Lixiong
  • 通讯作者:
    Zhang Lixiong
An acoustic/thermo-responsive hybrid system for advanced doxorubicin delivery in tumor treatment
用于肿瘤治疗中先进阿霉素输送的声/热响应混合系统
  • DOI:
    10.1039/c9bm01794a
  • 发表时间:
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Li Zhang;Shiyu Zhang;Huajian Chen;Yu Liang;Bingxia Zhao;Wanxian Luo;Qian Xiao;Jinheng Li;Junqiao Zhu;Chao Peng;Yaru Zhang;Zhe Hong;Ying Wang;Yingjia Li
  • 通讯作者:
    Yingjia Li
SU(2) Non-Abelian Photon
SU(2) 非阿贝尔光子
  • DOI:
    10.1007/s10773-017-3482-8
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiangyao Wu;Xiao;Hong Li;Si;Ji Ma;Ji;Yu Liang
  • 通讯作者:
    Yu Liang
Preparation, characterization and photocatalytic performance of heterostructured CuO-ZnO-loaded composite nanofiber membranes
异质结构CuO-ZnO负载复合纳米纤维膜的制备、表征及光催化性能
Long-Term Impacts of China's New Commercial Harvest Exclusion Policy on Ecosystem Services and Biodiversity in the Temperate Forests of Northeast China
中国新的商业收获排除政策对中国东北温带森林生态系统服务和生物多样性的长期影响
  • DOI:
    10.3390/su10041071
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Kai Liu;Yu Liang;Hong S. He;Wen J Wang;Chao Huang;Shengwei Zong;Lei Wang;Jiangtao Xiao;Haibo Du
  • 通讯作者:
    Haibo Du

Yu Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Gal-1+LDHA+NK 细胞通过诱导 DSC 自噬和蜕膜化障碍引发自然流产的分子机制
  • 批准号:
    24ZR1407500
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
桥粒芯胶黏蛋白DSC2与病毒包膜糖蛋白gH/gL互作介导EBV侵染上皮细胞的分子机制
  • 批准号:
    82372246
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DSC2功能缺失在原发性右心室扩张型心肌病的作用及机制研究
  • 批准号:
    82370357
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于DSC-MRI、DCE-MRI及DKI生理参数与ZEB1表达的关联机制实现复发胶质母细胞瘤ZEB1表达可视化的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
N-糖基化修饰在桥粒蛋白DSC2调控循环肿瘤细胞团形成、存活和转移中的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
早孕期DSC自噬引导蜕膜NK细胞在蜕膜驻留的分子机制研究
  • 批准号:
    82001636
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高分子低温区结晶动力学的Flash DSC研究
  • 批准号:
    21973042
  • 批准年份:
    2019
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
钨钼铌钽基双金属氧化物DSC对电极原位化学共沉淀构筑及催化机理研究
  • 批准号:
    51672208
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
聚合诱导相分离法原位生长可控结构碳催化层及其DSC光电性能优化理论
  • 批准号:
    51162025
  • 批准年份:
    2011
  • 资助金额:
    48.0 万元
  • 项目类别:
    地区科学基金项目
DSC2负性调控食管癌细胞侵袭迁移的分子机制
  • 批准号:
    81101613
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas
HDR DSC:协作研究:创建和整合数据科学团队以提高城市地区的生活质量
  • 批准号:
    2321574
  • 财政年份:
    2023
  • 资助金额:
    $ 72.36万
  • 项目类别:
    Standard Grant
HDR DSC: Collaborative Research: The Data Science WAV: Experiential Learning with Local Community Organizations
HDR DSC:协作研究:数据科学 WAV:与当地社区组织的体验式学习
  • 批准号:
    2242944
  • 财政年份:
    2022
  • 资助金额:
    $ 72.36万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Infusion of data science and computation into engineering curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
  • 批准号:
    2123237
  • 财政年份:
    2021
  • 资助金额:
    $ 72.36万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
  • 批准号:
    2123259
  • 财政年份:
    2021
  • 资助金额:
    $ 72.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
  • 批准号:
    2123486
  • 财政年份:
    2021
  • 资助金额:
    $ 72.36万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
  • 批准号:
    2123260
  • 财政年份:
    2021
  • 资助金额:
    $ 72.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
  • 批准号:
    2123447
  • 财政年份:
    2021
  • 资助金额:
    $ 72.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: HDR DSC: Building Capacity in Data Science through Biodiversity, Conservation, and General Education
合作研究:HDR DSC:通过生物多样性、保护和通识教育建设数据科学能力
  • 批准号:
    2122991
  • 财政年份:
    2021
  • 资助金额:
    $ 72.36万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Infusion of Data Science and Computation into Engineering Curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
  • 批准号:
    2123244
  • 财政年份:
    2021
  • 资助金额:
    $ 72.36万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: DS-PATH: Data Science Career Pathways in the Inland Empire)
合作研究:HDR DSC:DS-PATH:内陆帝国的数据科学职业道路)
  • 批准号:
    2123313
  • 财政年份:
    2021
  • 资助金额:
    $ 72.36万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了