Collaborative Research: High-Performance Biocatalytic Membranes with Self-Contained Radical Polymer Mediators for Water Reclamation and Reuse
合作研究:具有独立自由基聚合物介体的高性能生物催化膜,用于水回收和再利用
基本信息
- 批准号:1924715
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Access to clean water is among the greatest engineering challenges of the 21st century. Efficient use of existing freshwater resources is a primary strategy to address this challenge. However, current societal needs cannot be met without additional water from sources like brackish water and wastewater. Successful reclamation and reuse of these water sources depends on the development of technologies to ensure these waters are fit for use. This project addresses this need using natural enzymes to degrade toxic contaminants present in water. These highly-efficient biological catalysts will be formulated into biocatalytic membranes using recent advances in the fields of polymer chemistry and additive manufacturing. Biocatalytic inks that contain enzymes and other tailor-made functional components will be deposited onto nanoporous membrane supports in a modular fashion. The modular design can be customized for specific needs by changing the target enzymes and/or polymer mediators. Successful development of this technology will help address the critical challenges of the Nation to ensure the supply of safe, clean, and sustainable water resources. Broader impacts for society will result from this project by training the next generation of interdisciplinary scientists and engineers to address the challenge of supplying water to the Nation.Although efficient use of existing freshwater resources is a primary strategy to supply the Nation's water in the face of increasing demand, current societal needs cannot be met without additional water from sources like brackish water and wastewater. Successful reclamation and reuse of these water sources depends on the development of technologies to ensure these waters are fit for use. Enzyme biocatalysis is a promising platform to address this need. Such platforms require small molecular weight redox-active mediators to facilitate the enzymatic degradation of recalcitrant micropollutants. Although these small molecules provide clear benefits, they are costly and can leach from processes necessitating frequent replenishment. Therefore, it is critical to eliminate mediator washout to make this water treatment technology feasible. The overall goal of this project is to generate the scientific knowledge that enables the design and fabrication of high-performance biocatalytic membranes. This will be done by identifying control factors in the design of radical polymer-based macromolecular mediators and elucidating the processing-structure-property relationships that govern their co-deposition with enzymes on nanoporous supports. The specific research tasks to achieve this goal are to: 1) identify macromolecular mediator designs that promote the efficient degradation of micropollutants while preventing mediator washout; 2) elucidate the processing-structure-property relationships for biocatalytic membranes to correlate membrane support architecture with the biocatalytic and transport properties; and 3) evaluate biocatalytic membrane performance over the course of multiple recover and reuse cycles to inform membrane design for field-relevant applications. Successful completion of this research will address gaps in our knowledge on biocatalytic membrane design and manufacture. This knowledge will have broad impact in the fields of additive manufacturing as well as water treatment. The Nation will further benefit by the training of interdisciplinary scientists and engineers with the expertise necessary to advance the water technology landscape of the United States.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
获得清洁水是21世纪世纪最大的工程挑战之一。有效利用现有淡水资源是应对这一挑战的首要战略。然而,如果没有来自微咸水和废水等来源的额外水,就无法满足当前的社会需求。这些水源的成功回收和再利用取决于技术的发展,以确保这些沃茨适合使用。该项目利用天然酶降解水中存在的有毒污染物来满足这一需求。这些高效的生物催化剂将利用聚合物化学和增材制造领域的最新进展配制成生物催化膜。含有酶和其他定制功能成分的生物催化油墨将以模块化方式沉积在纳米多孔膜支撑物上。模块化设计可以通过改变靶酶和/或聚合物介体来针对特定需求进行定制。这项技术的成功开发将有助于解决国家的关键挑战,以确保安全,清洁和可持续的水资源的供应。通过培训下一代跨学科科学家和工程师来应对国家供水的挑战,该项目将对社会产生更广泛的影响。尽管有效利用现有淡水资源是面对日益增长的需求供应国家水的主要战略,但如果没有来自微咸水和废水等来源的额外水,目前的社会需求将无法满足。这些水源的成功回收和再利用取决于技术的发展,以确保这些沃茨适合使用。酶生物催化是一个有前途的平台,以满足这一需求。这些平台需要小分子量的氧化还原活性介质,以促进柠檬酸盐微污染物的酶促降解。虽然这些小分子提供了明显的好处,但它们成本高昂,并且可能从需要频繁补充的过程中浸出。因此,消除介体洗脱是使该水处理技术可行的关键。该项目的总体目标是产生能够设计和制造高性能生物催化膜的科学知识。这将通过确定自由基聚合物为基础的大分子介体的设计中的控制因素,并阐明其与酶在纳米多孔支持物上的共沉积的加工-结构-性质关系来完成。实现这一目标的具体研究任务是:1)确定大分子介体设计,促进微污染物的有效降解,同时防止介体洗脱; 2)阐明生物催化膜的过程-结构-性质关系,将膜支撑结构与生物催化和传输性质相关联;和3)在多次回收和再利用循环的过程中评价生物催化膜性能,以告知用于现场相关应用的膜设计。这项研究的成功完成将填补我们在生物催化膜设计和制造方面的知识空白。这些知识将在增材制造和水处理领域产生广泛的影响。国家将进一步受益于跨学科的科学家和工程师的培训与必要的专业知识,以推进美国的水技术景观。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Material Property Targets to Enable Adsorptive Water Treatment and Resource Recovery Systems
- DOI:10.1021/acsestengg.0c00046
- 发表时间:2021-08
- 期刊:
- 影响因子:7.1
- 作者:Elvis A. Eugene;W. Phillip;A. Dowling
- 通讯作者:Elvis A. Eugene;W. Phillip;A. Dowling
Design Considerations for Next‐Generation Polymer Sorbents: From Polymer Chemistry to Device Configurations
下一代聚合物吸附剂的设计考虑因素:从聚合物化学到设备配置
- DOI:10.1002/macp.202200032
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Ouimet, Jonathan Aubuchon;Xu, Jialing;Flores ‐ Hansen, Carsten;Phillip, William A.;Boudouris, Bryan W.
- 通讯作者:Boudouris, Bryan W.
Porous block polymer composite membranes for uranium uptake
- DOI:10.1016/j.apsusc.2023.158650
- 发表时间:2023-10
- 期刊:
- 影响因子:6.7
- 作者:Xinping He;Michael P. Dugas;John N. Hodul;B. Boudouris;W. Phillip
- 通讯作者:Xinping He;Michael P. Dugas;John N. Hodul;B. Boudouris;W. Phillip
Heavy metal removal using structured sorbents 3D printed from carbon nanotube-enriched polymer solutions
- DOI:10.1016/j.matt.2022.07.012
- 发表时间:2022-08
- 期刊:
- 影响因子:18.9
- 作者:Jialing Xu;Cheryl Slykas;Adam S. Braegelman;Kevin Gabriel Alvarez;Thomas Kasl;B. Boudouris;M. Webber;V. Sharma;W. Phillip
- 通讯作者:Jialing Xu;Cheryl Slykas;Adam S. Braegelman;Kevin Gabriel Alvarez;Thomas Kasl;B. Boudouris;M. Webber;V. Sharma;W. Phillip
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Phillip其他文献
William Phillip的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Phillip', 18)}}的其他基金
REU Site: Soft Materials for Applications in Sustainability and Healthcare Engineering
REU 网站:可持续发展和医疗保健工程应用的软材料
- 批准号:
2244410 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Elucidating Molecular Design Principles for Copolymer Membranes with Solute-Tailored Selectivity for the Separations of Rare Earth Elements
阐明用于稀土元素分离的具有溶质定制选择性的共聚物膜的分子设计原理
- 批准号:
2147605 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Unifying Principles for the Design and Manufacture of Chemically-Patterned Polymeric Membranes
化学图案聚合物膜设计和制造的统一原则
- 批准号:
1932206 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
GOALI: Collaborative Research: Integrated Biomimetic Block Copolymer Composite Membranes
GOALI:合作研究:集成仿生嵌段共聚物复合膜
- 批准号:
1512089 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Describing Macromolecular Transport through Chemically-Tuned Nanoporous Membranes via Theory, Computation, and Experiment
UNS:合作研究:通过理论、计算和实验描述通过化学调节的纳米多孔膜的大分子运输
- 批准号:
1511862 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Identification of Fundamental Processing-Structure-Property Relationships for Scalable Manufacturing of Self-Assembled Block Polymer Membranes
合作研究:确定自组装嵌段聚合物膜可规模化制造的基本加工-结构-性能关系
- 批准号:
1436159 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400166 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
- 批准号:
2420369 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403399 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400165 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant














{{item.name}}会员




