Elucidating Molecular Design Principles for Copolymer Membranes with Solute-Tailored Selectivity for the Separations of Rare Earth Elements

阐明用于稀土元素分离的具有溶质定制选择性的共聚物膜的分子设计原理

基本信息

  • 批准号:
    2147605
  • 负责人:
  • 金额:
    $ 47.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Rare-earth elements (REEs) are essential components in modern electronic devices and green energy technologies. For example, high flux magnets that contain REEs are critical to the operation of hard drives, wind turbines, and electric motors. Identifying methods to separate REEs from domestic ore deposits or recycle them from outdated electronics is critical to maintaining a reliable supply of these materials. The solvent extraction processes currently used to isolate these resources consume large amounts of chemical reagents and energy while producing large volumes of wastewaters. As such, traditional REE separation processes are difficult to implement sustainably. Membrane separations have demonstrated significant advantages in sustainability and energy efficiency in numerous other applications. To translate this paradigm to REE separations, membranes capable of distinguishing between REE ions are needed. However, REE ions have comparable sizes and the same charge when dissolved in solution, which makes them challenging to separate. This multidisciplinary project integrates recent advances in the fields of membrane science, polymer chemistry, and data science to address fundamental scientific questions related to the interfacial and thermodynamic phenomena that allow for the selective transport of REEs across polymer membranes. Systematic, experimental studies will be conducted to describe how membrane nanostructure, surface chemistry, and REE transport mechanisms are related. The fundamental knowledge to be gained has broad implications for the molecular engineering of selective membranes that address other critical separation challenges needed to ensure the well-being and prosperity of the American people. For example, by changing the membrane nanostructure and chemistry, molecular transport mechanisms can be tailored to enable the purification of therapeutic medicines or the treatment of drinking water. This project also helps revolutionize the separation science landscape of the U.S. by training the next cohort of interdisciplinary scientists and engineers.The overall goal of this proposal is to engineer novel membrane systems capable of separating REEs sustainably. Currently, there is no clear understanding of the interfacial and thermodynamic phenomena underlying the transport mechanisms that are capable of fractionating REE ions. Addressing this critical knowledge gap necessitates identifying the nanostructural and chemical control factors that govern the ability of membranes to permeate target solutes based on chemical identity. As such, the following specific aims will be pursued to establish quantitative structure-property relationships for the phenomena underlying solute-tailored transport mechanisms. (1) Fabricate and characterize copolymer membranes that are amenable to post-synthetic functionalization. This versatile materials platform offers orthogonal control over membrane nanostructure and chemistry such that a diverse array of interfacial and thermodynamic phenomena can be interrogated. (2) Develop a statistical learning framework to navigate the vast molecular design space associated with copolymer materials efficiently. Model-based design of experiments (MBDOE) and dynamic diafiltration experiments are proposed to identify the dominant interfacial phenomena up to 100 times faster than Edisonian searches. (3) Utilize statistical learning to guide the development of structure-property relationships for selective transport mechanisms in copolymer membranes. This research program presents an opportunity to make significant progress toward elucidating the critical relationships for membranes capable of transporting target solutes based on chemical, rather than steric, factors, having applications well beyond REE separations. Moreover, the proposed work offers a new, high-throughput paradigm to characterize membranes using dynamic experiments and MBDOE.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
稀土元素 (REE) 是现代电子设备和绿色能源技术的重要组成部分。例如,含有稀土元素的高通量磁体对于硬盘驱动器、风力涡轮机和电动机的运行至关重要。确定从国内矿藏中分离稀土元素或从过时的电子产品中回收稀土元素的方法对于维持这些材料的可靠供应至关重要。目前用于分离这些资​​源的溶剂萃取工艺消耗大量化学试剂和能源,同时产生大量废水。因此,传统的稀土元素分离工艺难以可持续实施。膜分离在许多其他应用中已显示出在可持续性和能源效率方面的显着优势。为了将此范例转化为稀土元素分离,需要能够区分稀土元素离子的膜。然而,稀土离子溶解在溶液中时具有相似的尺寸和相同的电荷,这使得它们难以分离。这个多学科项目整合了膜科学、聚合物化学和数据科学领域的最新进展,以解决与界面和热力学现象相关的基本科学问题,从而允许稀土元素选择性地跨聚合物膜传输。将进行系统的实验研究来描述膜纳米结构、表面化学和稀土元素传输机制之间的关系。所获得的基础知识对选择性膜的分子工程具有广泛的影响,可以解决确保美国人民福祉和繁荣所需的其他关键分离挑战。例如,通过改变膜纳米结构和化学性质,可以定制分子运输机制,以实现治疗药物的纯化或饮用水的处理。该项目还通过培训下一代跨学科科学家和工程师,帮助彻底改变美国的分离科学格局。该提案的总体目标是设计能够可持续分离稀土元素的新型膜系统。目前,对于能够分馏 REE 离子的传输机制背后的界面和热力学现象还没有明确的了解。解决这一关键的知识差距需要确定纳米结构和化学控制因素,这些因素控制膜基于化学特性渗透目标溶质的能力。因此,将追求以下具体目标,为溶质定制传输机制背后的现象建立定量结构-性质关系。 (1) 制造并表征适合合成后官能化的共聚物膜。这种多功能材料平台提供对膜纳米结构和化学的正交控制,从而可以询问各种界面和热力学现象。 (2) 开发统计学习框架,以有效地驾驭与共聚物材料相关的广阔分子设计空间。基于模型的实验设计 (MBDOE) 和动态渗滤实验旨在识别主要界面现象,速度比爱迪生搜索快 100 倍。 (3)利用统计学习来指导共聚物膜中选择性传输机制的结构-性质关系的发展。该研究项目提供了一个机会,可以在阐明能够基于化学而非空间因素传输目标溶质的膜的关键关系方面取得重大进展,其应用远远超出稀土元素分离。此外,拟议的工作提供了一种新的高通量范例,使用动态实验和 MBDOE 来表征膜。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isolating the effects of gate layer permeability and sorbent density on the performance of solute-selective polymeric ion pumps
  • DOI:
    10.1039/d3me00073g
  • 发表时间:
    2023-07-19
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Ouimet,Jonathan Aubuchon;Dowling,Alexander W.;Phillip,William A.
  • 通讯作者:
    Phillip,William A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Phillip其他文献

William Phillip的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Phillip', 18)}}的其他基金

REU Site: Soft Materials for Applications in Sustainability and Healthcare Engineering
REU 网站:可持续发展和医疗保健工程应用的软材料
  • 批准号:
    2244410
  • 财政年份:
    2023
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Performance Biocatalytic Membranes with Self-Contained Radical Polymer Mediators for Water Reclamation and Reuse
合作研究:具有独立自由基聚合物介体的高性能生物催化膜,用于水回收和再利用
  • 批准号:
    1924715
  • 财政年份:
    2019
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
Unifying Principles for the Design and Manufacture of Chemically-Patterned Polymeric Membranes
化学图案聚合物膜设计和制造的统一原则
  • 批准号:
    1932206
  • 财政年份:
    2019
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: Integrated Biomimetic Block Copolymer Composite Membranes
GOALI:合作研究:集成仿生嵌段共聚物复合膜
  • 批准号:
    1512089
  • 财政年份:
    2015
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Describing Macromolecular Transport through Chemically-Tuned Nanoporous Membranes via Theory, Computation, and Experiment
UNS:合作研究:通过理论、计算和实验描述通过化学调节的纳米多孔膜的大分子运输
  • 批准号:
    1511862
  • 财政年份:
    2015
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Identification of Fundamental Processing-Structure-Property Relationships for Scalable Manufacturing of Self-Assembled Block Polymer Membranes
合作研究:确定自组装嵌段聚合物膜可规模化制造的基本加工-结构-性能关系
  • 批准号:
    1436159
  • 财政年份:
    2014
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant

相似国自然基金

Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
  • 批准号:
    81300605
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Molecular imprinting strategy to rationally design porous solid acid catalysts for C-C coupling chemistries
职业:分子印迹策略合理设计用于 C-C 偶联化学的多孔固体酸催化剂
  • 批准号:
    2340993
  • 财政年份:
    2024
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Continuing Grant
Collaborative Research: Catholyte Molecular Design For Non-aqueous Mg-organic Hybrid Redox Flow Batteries
合作研究:非水镁有机混合氧化还原液流电池的阴极电解液分子设计
  • 批准号:
    2419938
  • 财政年份:
    2024
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: CREST-PRP: Investigation and design of Molecular Spintronic photovoltaic devices via Raman Spectroscopy
博士后奖学金:CREST-PRP:通过拉曼光谱研究和设计分子自旋电子光伏器件
  • 批准号:
    2401024
  • 财政年份:
    2024
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
Conference: 2024 Polymer Physics GRC and GRS, Role of Molecular Design in Polymer Physics
会议:2024高分子物理GRC和GRS,分子设计在高分子物理中的作用
  • 批准号:
    2402308
  • 财政年份:
    2024
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
Carboxyl-alkyl Functionalization for Sustainable Mixed Conduction Polymers: molecular design and mechanistic insights
可持续混合导电聚合物的羧基烷基官能化:分子设计和机理见解
  • 批准号:
    2408881
  • 财政年份:
    2024
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chemo-Physics and Molecular Design of In-situ Hydrogel-MXene Biosensors
合作研究:原位水凝胶-MXene生物传感器的化学物理和分子设计
  • 批准号:
    2320716
  • 财政年份:
    2023
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
Unlocking organic polariton lasers with systematic molecular design
通过系统分子设计解锁有机偏振子激光器
  • 批准号:
    2324344
  • 财政年份:
    2023
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
CAS: Molecular Design of Photoactive Covalent Organic Frameworks Capable of Reductive and Oxidative Degradation of Perfluoroalkyl Substances
CAS:能够还原和氧化降解全氟烷基物质的光活性共价有机框架的分子设计
  • 批准号:
    2247729
  • 财政年份:
    2023
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
Precise Molecular Design of Highly Active Metal Ion Clusters and Development of Catalytic Functions
高活性金属离子簇的精确分子设计和催化功能的开发
  • 批准号:
    23K17365
  • 财政年份:
    2023
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Design and synthesis of shortwave-infrared (SWIR) fluorescent probes for specifically targeted molecular imaging of breast cancer.
设计和合成短波红外 (SWIR) 荧光探针,用于乳腺癌的特异性靶向分子成像。
  • 批准号:
    23K13851
  • 财政年份:
    2023
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了