EAGER: AI-DCL: Hybrid human algorithm predictions: balancing effort, accuracy, and perceived autonomy
EAGER:AI-DCL:混合人类算法预测:平衡努力、准确性和感知自主性
基本信息
- 批准号:1927245
- 负责人:
- 金额:$ 29.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence algorithms are becoming an increasingly common component in everyday decision-making scenarios. Such algorithms use medical data to assist doctors in making diagnostic and treatment decisions, use sensor data to assist drivers in operating vehicles, and use review data to make recommendations for products to purchase and restaurants to visit. These systems are often hybrid, with decisions influenced by a combination of an artificial intelligence algorithm and a human decision-maker. For example, in one mode of operation, a human makes each decision after taking into account input from the algorithm. In another mode of operation, when human resources are limited (as in medical diagnosis), a hybrid system can use the algorithm to make the majority of routine decisions and allocate to a human decision-maker only those problems that are most challenging to the algorithm. As these hybrid systems are being increasingly used in critical decision-making tasks it is important to address questions about the understanding and design of such systems. This project will address a series of fundamental questions about hybrid decision-making systems from the dual perspectives of algorithm development and cognitive models of human reasoning and decision-making. For example, how can the overall performance of a hybrid human-algorithm system be optimized when taking into account limited human resources and potential trade-offs between human and algorithmic skills? From a psychological perspective, does a perceived lack of autonomy negatively affect human engagement and can systems be designed to mitigate this? The project will develop new theories and methods for how humans and algorithms can work together and the results will help produce more accurate and more robust decision-making systems across a variety of areas such as medicine, transportation, business, and consumer applications. To achieve its goals the research project will bring together prior threads of work from psychology, machine learning, and Bayesian estimation. The project will consist of two closely-coupled components with a common focus on modeling and understanding of prediction problems that are handled by a combination of human and algorithmic expertise. The first component will develop and evaluate different computational and statistical frameworks for an algorithmic arbitrator that balances black-box predictions and human expertise in large-scale classification tasks. The second component will build on theories from human cognition and psychology to analyze joint algorithm-human prediction performance, with explicit consideration of the effect of a human dropping out and not continuing to work with the algorithm (e.g., due to a perceived lack of autonomy). An extensive series of user studies, under a variety of hybrid prediction scenarios and different decision allocation methods, will be conducted during the project to support the development of new cognitive insights and computational approaches for hybrid algorithm-human prediction systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能算法正在成为日常决策场景中越来越常见的组件。这些算法使用医疗数据来帮助医生做出诊断和治疗决策,使用传感器数据来帮助驾驶员操作车辆,并使用评论数据来推荐购买的产品和参观的餐馆。这些系统通常是混合的,决策受到人工智能算法和人类决策者的组合影响。例如,在一种操作模式中,人在考虑来自算法的输入之后做出每个决定。在另一种操作模式中,当人力资源有限时(如在医疗诊断中),混合系统可以使用算法来做出大多数例行决策,并仅将那些对算法最具挑战性的问题分配给人类决策者。随着这些混合系统越来越多地用于关键的决策任务,重要的是要解决有关的理解和设计这样的系统的问题。该项目将从算法开发和人类推理和决策的认知模型的双重角度解决有关混合决策系统的一系列基本问题。例如,当考虑到有限的人力资源和人类与算法技能之间的潜在权衡时,如何优化混合人类算法系统的整体性能?从心理学的角度来看,缺乏自主性是否会对人类参与产生负面影响,是否可以设计系统来减轻这种影响?该项目将为人类和算法如何协同工作开发新的理论和方法,其结果将有助于在医疗、交通、商业和消费者应用等各个领域产生更准确、更强大的决策系统。 为了实现其目标,该研究项目将汇集来自心理学,机器学习和贝叶斯估计的先前工作线程。该项目将由两个紧密耦合的组件组成,共同关注由人类和算法专业知识相结合处理的预测问题的建模和理解。第一部分将开发和评估不同的计算和统计框架,用于算法仲裁器,该仲裁器在大规模分类任务中平衡黑箱预测和人类专业知识。第二部分将建立在人类认知和心理学的理论基础上,以分析联合算法-人类预测性能,明确考虑人类退出并且不继续使用算法的影响(例如,由于缺乏自主权)。在项目期间,将在各种混合预测情景和不同决策分配方法下进行一系列广泛的用户研究,以支持开发新的认知见解和混合算法-人类预测系统的计算方法。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference
我可以相信我的公平指标吗?
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Smyth, P;Steyvers, M
- 通讯作者:Steyvers, M
A Brief Tour of Deep Learning from a Statistical Perspective
从统计角度简要介绍深度学习
- DOI:10.1146/annurev-statistics-032921-013738
- 发表时间:2023
- 期刊:
- 影响因子:7.9
- 作者:Nalisnick, Eric;Smyth, Padhraic;Tran, Dustin
- 通讯作者:Tran, Dustin
AI-Assisted Decision-making: a Cognitive Modeling Approach to Infer Latent Reliance Strategies
人工智能辅助决策:推断潜在依赖策略的认知建模方法
- DOI:10.1007/s42113-022-00157-y
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tejeda, Heliodoro;Kumar, Aakriti;Smyth, Padhraic;Steyvers, Mark
- 通讯作者:Steyvers, Mark
Explaining Algorithm Aversion with Metacognitive Bandits
用元认知强盗解释算法厌恶
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kumar, A.;Patel, T.;Benjamin, A.;Steyvers, M.
- 通讯作者:Steyvers, M.
Combining human predictions with model probabilities via confusion matrices and calibration
通过混淆矩阵和校准将人类预测与模型概率相结合
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kerrigan, Gavin;Smyth, Padhraic;Steyvers, Mark
- 通讯作者:Steyvers, Mark
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Steyvers其他文献
Moving beyond qualitative evaluations of Bayesian models of cognition
- DOI:
10.3758/s13423-014-0725-z - 发表时间:
2014-09-19 - 期刊:
- 影响因子:3.000
- 作者:
Pernille Hemmer;Sean Tauber;Mark Steyvers - 通讯作者:
Mark Steyvers
A model for recognition memory: REM—retrieving effectively from memory
- DOI:
10.3758/bf03209391 - 发表时间:
1997-06-01 - 期刊:
- 影响因子:3.000
- 作者:
Richard M. Shiffrin;Mark Steyvers - 通讯作者:
Mark Steyvers
An item response theory model of matching test performance
- DOI:
10.1016/j.jmp.2020.102327 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:
- 作者:
Matthew D. Zeigenfuse;William H. Batchelder;Mark Steyvers - 通讯作者:
Mark Steyvers
A generative joint model for spike trains and saccades during perceptual decision-making
- DOI:
10.3758/s13423-016-1056-z - 发表时间:
2016-05-31 - 期刊:
- 影响因子:3.000
- 作者:
Peter J. Cassey;Garren Gaut;Mark Steyvers;Scott D. Brown - 通讯作者:
Scott D. Brown
What large language models know and what people think they know
大型语言模型知道什么以及人们认为它们知道什么
- DOI:
10.1038/s42256-024-00976-7 - 发表时间:
2025-01-21 - 期刊:
- 影响因子:23.900
- 作者:
Mark Steyvers;Heliodoro Tejeda;Aakriti Kumar;Catarina Belem;Sheer Karny;Xinyue Hu;Lukas W. Mayer;Padhraic Smyth - 通讯作者:
Padhraic Smyth
Mark Steyvers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Steyvers', 18)}}的其他基金
NCS-FO: Collaborative Research: Understanding Individual Differences in Cognitive Performance: Joint Hierarchical Bayesian Modeling of Behavioral and Neuroimaging Data
NCS-FO:协作研究:了解认知表现的个体差异:行为和神经影像数据的联合分层贝叶斯建模
- 批准号:
1533661 - 财政年份:2015
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
相似国自然基金
AI 辅助药物设计姜黄素化合物的靶向结构修饰及其防治肝衰竭的成药性研究
- 批准号:JCZRLH202500512
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
应用于AI芯片的先进封装TSV关键技术研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动的工业微生物合成元件挖掘与产品智造
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“治未病”理论构建AI赋能下的肥胖伴焦虑状态针灸数智化防治体系
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Education DCL: EAGER: Advancing Secure Coding Education: Empowering Students to Safely Utilize AI-powered Coding Assistant Tools
教育 DCL:EAGER:推进安全编码教育:使学生能够安全地利用人工智能驱动的编码辅助工具
- 批准号:
2335798 - 财政年份:2023
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
Education DCL: EAGER: Generative AI-based Personalized Cybersecurity Tutor for Fourth Industrial Revolution
教育 DCL:EAGER:第四次工业革命的基于生成人工智能的个性化网络安全导师
- 批准号:
2335046 - 财政年份:2023
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
Education DCL: EAGER: Developing Experiential Cybersecurity and Privacy Training for AI Practitioners
教育 DCL:EAGER:为人工智能从业者开发体验式网络安全和隐私培训
- 批准号:
2335700 - 财政年份:2023
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
- 批准号:
2125116 - 财政年份:2021
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
- 批准号:
2127754 - 财政年份:2021
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Addressing sociotechnical challenges of conversational agents and interventions in the context of elderly care
EAGER:AI-DCL:解决老年护理背景下对话代理和干预措施的社会技术挑战
- 批准号:
1927190 - 财政年份:2019
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
AI-DCL: Collaborative Research: EAGER: Understanding and Alleviating Potential Biases in Large Scale Employee Selection Systems: The Case of Automated Video Interviews
AI-DCL:协作研究:EAGER:理解和减轻大规模员工选拔系统中的潜在偏见:自动视频面试的案例
- 批准号:
1921111 - 财政年份:2019
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
- 批准号:
1927322 - 财政年份:2019
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
- 批准号:
1927422 - 财政年份:2019
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant
AI-DCL: EAGER: Fairness-aware Informatics System for Enhancing Disaster Resilience
AI-DCL:EAGER:增强抗灾能力的公平意识信息系统
- 批准号:
1927513 - 财政年份:2019
- 资助金额:
$ 29.39万 - 项目类别:
Standard Grant