AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
基本信息
- 批准号:2125116
- 负责人:
- 金额:$ 29.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports a research project that will help people to better understand decision algorithms that are developed using machine learning techniques. The research team will facilitate that understanding by making use of a promising class of explanations that use counterfactual scenarios. Such explanations provide understanding by showing how outcomes change when hypothetical changes are made in factors that together serve to determine the decision outcome. As a concrete example, consider a person who applies for a loan from a financial company but is rejected by the loan distribution algorithm used by the company. To help the person understand why the decision algorithm rejected the application, the explanation algorithm would generate counterfactual scenarios in which the applicant's situation is hypothetically changed in viable ways (such as moving to a nearby city, or changing jobs) to see whether this affects the decision outcome. If this approach is successful, it would be applicable to a variety of societally critical domains where machine learning holds promise for improving decision making including healthcare, criminal justice, finance, and hiring. The project will have other impacts as well. The research team will release a public web site to engage the public with human-centered machine learning approaches. The PI will work with the University of Colorado Boulder's Science Discovery to present demos at events such as "Family Engineering Day" and "Boulder Computer Science Week". In addition to training graduate students, the PI will host high-school students as summer interns, integrate findings from the proposed work into educational activities at the University of Colorado Boulder, and make educational materials publicly available for use by instructors at other institutions. This research project seeks to explain machine decisions by generating diverse and feasible counterfactuals and developing user-centered interactive processes. The results of this project will constitute an important step towards building machine-in-the-loop methods to empower users in understanding algorithmic decisions. Specific contributions include developing diversity and distance metrics for generating diverse counterfactuals, integrating causal graphs to generate feasible counterfactuals that align with real-world processes, developing novel user-centered designs to examine human interaction with counterfactuals, and advancing design principles for explaining algorithmic decisions. The team will also develop human-centered designs that enable users to interact with counterfactual explanations. This will enable the researchers to conduct large-scale user studies to understand human preferences, which would in turn serve as an effective evaluation of their proposed method. The results of this research project will contribute to the emerging area of interpretable machine learning that emphasizes human-centered designs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持一个研究项目,该项目将帮助人们更好地理解使用机器学习技术开发的决策算法。研究小组将通过使用反事实情景的有希望的解释来促进这种理解。这些解释通过展示当共同决定决策结果的因素发生假设性变化时,结果如何变化来提供理解。作为一个具体的例子,考虑一个人向一家金融公司申请贷款,但被该公司使用的贷款分配算法拒绝。为了帮助申请人理解决策算法拒绝申请的原因,解释算法将生成反事实场景,在这些场景中,申请人的情况假设以可行的方式改变(例如搬到附近的城市或换工作),以查看这是否会影响决策结果。如果这种方法成功,它将适用于各种社会关键领域,在这些领域,机器学习有望改善决策,包括医疗保健、刑事司法、金融和招聘。该项目还将产生其他影响。研究团队将发布一个公共网站,让公众参与以人为本的机器学习方法。PI将与科罗拉多大学博尔德分校的科学发现项目合作,在“家庭工程日”和“博尔德计算机科学周”等活动中展示演示。除了培训研究生外,PI还将接待高中生作为暑期实习生,将拟议工作的结果纳入科罗拉多博尔德大学的教育活动,并公开提供教育材料供其他机构的教师使用。该研究项目旨在通过生成多样化和可行的反事实和开发以用户为中心的交互过程来解释机器决策。该项目的结果将构成构建机器在环方法的重要一步,使用户能够理解算法决策。具体的贡献包括开发多样性和距离指标,以产生不同的反事实,整合因果图,以产生可行的反事实,符合现实世界的过程,开发新的以用户为中心的设计,以检查人类与反事实的互动,并推进设计原则,解释算法决策。该团队还将开发以人为本的设计,使用户能够与反事实的解释进行互动。这将使研究人员能够进行大规模的用户研究,以了解人类的偏好,这反过来又可以作为他们提出的方法的有效评估。该研究项目的成果将为强调以人为本的设计的可解释机器学习的新兴领域做出贡献。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
- DOI:10.1145/3461702.3462597
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:R. Mothilal;Divyat Mahajan;Chenhao Tan;Amit Sharma
- 通讯作者:R. Mothilal;Divyat Mahajan;Chenhao Tan;Amit Sharma
Decision-Focused Summarization
- DOI:10.18653/v1/2021.emnlp-main.10
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Chao-Chun Hsu;Chenhao Tan
- 通讯作者:Chao-Chun Hsu;Chenhao Tan
Understanding the Effect of Out-of-distribution Examples and Interactive Explanations on Human-AI Decision Making
- DOI:10.1145/3479552
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Han Liu;Vivian Lai;Chenhao Tan
- 通讯作者:Han Liu;Vivian Lai;Chenhao Tan
Evaluating and Characterizing Human Rationales
- DOI:10.18653/v1/2020.emnlp-main.747
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Samuel Carton;Anirudh Rathore;Chenhao Tan
- 通讯作者:Samuel Carton;Anirudh Rathore;Chenhao Tan
On the Diversity and Limits of Human Explanations
论人类解释的多样性和局限性
- DOI:10.18653/v1/2022.naacl-main.158
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tan, Chenhao
- 通讯作者:Tan, Chenhao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chenhao Tan其他文献
A Tale of Two Communities: Characterizing Reddit Response to COVID-19 through /r/China_Flu and /r/Coronavirus
两个社区的故事:通过 /r/China_Flu 和 /r/Coronavirus 描述 Reddit 对 COVID-19 的反应
- DOI:
10.3233/faia200305 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
J. S. Zhang;Brian Keegan;Q. Lv;Chenhao Tan - 通讯作者:
Chenhao Tan
Responsible Language Technologies: Foreseeing and Mitigating Harms
负责任的语言技术:预见和减轻危害
- DOI:
10.1145/3491101.3516502 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Su Lin Blodgett;Q. Liao;Alexandra Olteanu;Rada Mihalcea;Michael J. Muller;M. Scheuerman;Chenhao Tan;Qian Yang - 通讯作者:
Qian Yang
spanQuery-dependent cross-domain ranking in heterogeneous network/span
异构网络中依赖于查询的跨域排名
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.7
- 作者:
Bo Wang;Jie Tang;Wei Fan;Songcan Chen;Chenhao Tan;Zi Yang - 通讯作者:
Zi Yang
Query-dependent Cross Domain Ranking in Heterogenous Network.
异构网络中依赖于查询的跨域排名。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.7
- 作者:
Bo Wang;Jie Tang;Wei Fan;Songcan Chen;Chenhao Tan;Zi Yang - 通讯作者:
Zi Yang
Science, AskScience, and BadScience: On the Coexistence of Highly Related Communities
Science、AskScience 和 BadScience:论高度相关社区的共存
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jack Hessel;Chenhao Tan;Lillian Lee - 通讯作者:
Lillian Lee
Chenhao Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chenhao Tan', 18)}}的其他基金
NSF-CSIRO: HCC: Small: From Legislations to Action: Responsible AI for Climate Change
NSF-CSIRO:HCC:小型:从立法到行动:负责任的人工智能应对气候变化
- 批准号:
2302785 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
CRII: CHS: Harnessing Machine Learning to Improve Human Decision Making: A Case Study on Deceptive Detection
CRII:CHS:利用机器学习改善人类决策:欺骗检测案例研究
- 批准号:
2125113 - 财政年份:2021
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
FAI: Towards Adaptive and Interactive Post Hoc Explanations
FAI:迈向自适应和交互式事后解释
- 批准号:
2040989 - 财政年份:2021
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
CAREER: Harnessing Decision-focused Explanations as a Bridge between Humans and Artificial Intelligence
职业:利用以决策为中心的解释作为人类和人工智能之间的桥梁
- 批准号:
2126602 - 财政年份:2021
- 资助金额:
$ 29.78万 - 项目类别:
Continuing Grant
CAREER: Harnessing Decision-focused Explanations as a Bridge between Humans and Artificial Intelligence
职业:利用以决策为中心的解释作为人类和人工智能之间的桥梁
- 批准号:
1941973 - 财政年份:2020
- 资助金额:
$ 29.78万 - 项目类别:
Continuing Grant
CRII: CHS: Harnessing Machine Learning to Improve Human Decision Making: A Case Study on Deceptive Detection
CRII:CHS:利用机器学习改善人类决策:欺骗检测案例研究
- 批准号:
1849931 - 财政年份:2019
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
- 批准号:
1927322 - 财政年份:2019
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
相似国自然基金
OH+HCl/DCl↔H2O/HOD+Cl态-态反应的全维微分截面研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
番茄抗病毒基因DCL2b受病毒诱导调控的分子机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
套索RNA通过拮抗DCL1复合物抑制植物miRNA产生的分子机制
- 批准号:31671261
- 批准年份:2016
- 资助金额:63.0 万元
- 项目类别:面上项目
拟南芥DCL4介导、不依赖DRB4的新抗病毒RNA沉默分子机制研究
- 批准号:31570145
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
DCL在DNAmβ诱导的基因沉默和抗TYLCCNV病毒中的功能分析
- 批准号:30771406
- 批准年份:2007
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Education DCL: EAGER: Advancing Secure Coding Education: Empowering Students to Safely Utilize AI-powered Coding Assistant Tools
教育 DCL:EAGER:推进安全编码教育:使学生能够安全地利用人工智能驱动的编码辅助工具
- 批准号:
2335798 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Education DCL: EAGER: Generative AI-based Personalized Cybersecurity Tutor for Fourth Industrial Revolution
教育 DCL:EAGER:第四次工业革命的基于生成人工智能的个性化网络安全导师
- 批准号:
2335046 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Education DCL: EAGER: Developing Experiential Cybersecurity and Privacy Training for AI Practitioners
教育 DCL:EAGER:为人工智能从业者开发体验式网络安全和隐私培训
- 批准号:
2335700 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
- 批准号:
2127754 - 财政年份:2021
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Addressing sociotechnical challenges of conversational agents and interventions in the context of elderly care
EAGER:AI-DCL:解决老年护理背景下对话代理和干预措施的社会技术挑战
- 批准号:
1927190 - 财政年份:2019
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Hybrid human algorithm predictions: balancing effort, accuracy, and perceived autonomy
EAGER:AI-DCL:混合人类算法预测:平衡努力、准确性和感知自主性
- 批准号:
1927245 - 财政年份:2019
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
AI-DCL: Collaborative Research: EAGER: Understanding and Alleviating Potential Biases in Large Scale Employee Selection Systems: The Case of Automated Video Interviews
AI-DCL:协作研究:EAGER:理解和减轻大规模员工选拔系统中的潜在偏见:自动视频面试的案例
- 批准号:
1921111 - 财政年份:2019
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
- 批准号:
1927322 - 财政年份:2019
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
- 批准号:
1927422 - 财政年份:2019
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
AI-DCL: EAGER: Fairness-aware Informatics System for Enhancing Disaster Resilience
AI-DCL:EAGER:增强抗灾能力的公平意识信息系统
- 批准号:
1927513 - 财政年份:2019
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant