AI-DCL: EAGER: Fairness-aware Informatics System for Enhancing Disaster Resilience

AI-DCL:EAGER:增强抗灾能力的公平意识信息系统

基本信息

  • 批准号:
    1927513
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This award supports a research project to develop a smart, fairness-aware, emergency informatics system. The system would automatically collect disaster-related data for real-time event monitoring and prediction making to better coordinate search and rescue operations. The system could, for example, automatically collect real-time victim event data from social media such as Twitter, utilize predictive algorithms to capture the spatiotemporal dynamics associated with those events, forecast future events, and direct rescue teams in response. Such systems would be useful to state and local government agencies for resource allocation and planning. For the public to support their implementation, steps are needed to ensure that they operate fairly; it is well known that decisions made by algorithms generated by machine learning techniques often exhibit bias due to a number of factors including data bias and the design of algorithm models. A rescue system based only on Twitter data, for example, may exhibit socioeconomic bias since higher disaster-related Twitter-use communities tend to be communities of higher socioeconomic status. To address fairness concerns, a prototype will be tested and verified using Twitter data as well as data collected from other sources in response to Hurricane Harvey. The approach could be applied to various types of emergency situations including earthquakes and fires. The project is interdisciplinary; the research team includes an expert in computer science and artificial intelligence, and another in geography and spatial sciences. Two graduate research assistants will also be involved in the project, which will deepen their understanding of machine learning, data analytics, and environmental social science; as a result, the project will contribute to capacity building for interdisciplinary research. Results of this project will also be incorporated into course materials and classroom activities.The central goal of this research project is to develop a fairness-aware AI system for emergency management. The project involves formulating and testing reliable principles and methods to adjust the AI algorithms for fairness, a very domain specific challenge. This is especially true in emergency management, where the system has to be able to predict rescue events in real time from large, noisy, and biased data, such as Twitter data. In light of this, the research team will develop a novel point process model for event prediction from streaming data, and it will investigate statistical learning problems when event data are noisy and incomplete. To adjust for the fairness of the prediction algorithm, the team will integrate heterogeneous social and geographical data with varying degrees of granularity and different levels to build a classic event prediction model and to examine correlations between the two approaches. Through comparing the approaches (with and without fairness adjustment) using an empirical example (Hurricane Harvey), the project will reveal the patterns of disparities, if any, and add new knowledge on community resilience and emergency management. Theory, models, and software all together form a framework that leads to scientific advances to further development in disaster resilience. This interdisciplinary research will serve to advance our understanding of machine learning, data science, and socioeconomic fairness in the management of environmental hazards. New methods will be developed to tackle incomplete and biased data and to integrate them with other components of emergency informatics systems. The approach will be applicable to many other AI system developments efforts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持一项研究项目,以开发一个智能,公平意识,应急信息系统。该系统将自动收集灾害相关数据,用于实时事件监测和预测,以更好地协调搜救行动。例如,该系统可以自动从Twitter等社交媒体上收集实时受害者事件数据,利用预测算法捕捉与这些事件相关的时空动态,预测未来的事件,并指导救援团队做出反应。这种系统将有助于州和地方政府机构进行资源分配和规划。要让公众支持这些机制的实施,就需要采取措施确保它们公平运作;众所周知,由机器学习技术生成的算法做出的决策往往会由于数据偏差和算法模型设计等多种因素而出现偏差。例如,仅基于Twitter数据的救援系统可能会表现出社会经济偏见,因为与灾难相关的Twitter使用社区往往是社会经济地位较高的社区。为了解决公平性问题,将使用Twitter数据以及从其他来源收集的数据对原型进行测试和验证,以应对飓风哈维。该方法可适用于各种紧急情况,包括地震和火灾。这个项目是跨学科的;该研究团队包括一名计算机科学和人工智能专家,以及一名地理和空间科学专家。两名研究生研究助理也将参与该项目,这将加深他们对机器学习、数据分析和环境社会科学的理解;因此,该项目将有助于跨学科研究的能力建设。该项目的成果也将被纳入课程教材和课堂活动中。该研究项目的中心目标是开发一个具有公平性的应急管理人工智能系统。该项目涉及制定和测试可靠的原则和方法,以调整人工智能算法的公平性,这是一个非常特定领域的挑战。在应急管理中尤其如此,系统必须能够从大量、嘈杂和有偏见的数据(如Twitter数据)中实时预测救援事件。鉴于此,研究小组将开发一种新的基于流数据的事件预测点过程模型,并研究事件数据有噪声和不完整时的统计学习问题。为了调整预测算法的公平性,该团队将整合不同粒度和不同级别的异构社会和地理数据,以构建一个经典的事件预测模型,并检查两种方法之间的相关性。通过使用一个经验例子(哈维飓风)比较方法(有和没有公平调整),该项目将揭示差异的模式,如果有的话,并增加关于社区复原力和应急管理的新知识。理论、模型和软件共同构成了一个框架,引领科学进步,进一步发展灾害恢复能力。这项跨学科研究将有助于促进我们对机器学习、数据科学和环境危害管理中的社会经济公平的理解。将开发新的方法来处理不完整和有偏见的数据,并将其与应急信息系统的其他组成部分相结合。该方法将适用于许多其他人工智能系统开发工作。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Game-Theoretic Approach to Achieving Bilateral Privacy-Utility Tradeoff in Spectrum Sharing
Human Action Image Generation with Differential Privacy
具有差分隐私的人类动作图像生成
A Machine Learning Approach for Detecting Rescue Requests from Social Media
  • DOI:
    10.3390/ijgi11110570
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheye Wang;N. Lam;Mingxuan Sun;Xiao Huang;Jin Shang;Lei Zou;Yue Wu;V. Mihunov
  • 通讯作者:
    Zheye Wang;N. Lam;Mingxuan Sun;Xiao Huang;Jin Shang;Lei Zou;Yue Wu;V. Mihunov
Bilateral Privacy-Utility Tradeoff in Spectrum Sharing Systems: A Game-Theoretic Approach
  • DOI:
    10.1109/twc.2021.3065927
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Mengmeng Liu;Xiangwei Zhou;Mingxuan Sun
  • 通讯作者:
    Mengmeng Liu;Xiangwei Zhou;Mingxuan Sun
Sparse Transformer Hawkes Process for Long Event Sequences
长事件序列的稀疏变压器霍克斯过程
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Zhuoqun;Sun, Mingxuan.
  • 通讯作者:
    Sun, Mingxuan.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mingxuan Sun其他文献

Convergence of incremental adaptitive systems
增量自适应系统的收敛
  • DOI:
  • 发表时间:
    2013-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingxuan Sun
  • 通讯作者:
    Mingxuan Sun
Stabilizing Obligatory Non-native Intermediates Along Co-transcriptional Folding Trajectories of SRP RNA Affects Cell Viability
沿着 SRP RNA 共转录折叠轨迹稳定必需的非天然中间体会影响细胞活力
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shingo Fukuda;Shannon Yan;Yusuke Komi;Mingxuan Sun;R. Gabizon;C. Bustamante
  • 通讯作者:
    C. Bustamante
Alternative SRP RNA Folded States Accessible Co-transcriptionally can Modulate SRP Protein-Targeting Activity
  • DOI:
    10.1016/j.bpj.2017.11.1198
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Shingo Fukuda;Shannon Yan;Mingxuan Sun;Carlos J. Bustamante
  • 通讯作者:
    Carlos J. Bustamante
LMI-based robust iterative learning controller design for discrete linear uncertain systems
  • DOI:
    10.1007/s11768-005-0046-x
  • 发表时间:
    2005-08-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Jianming Xu;Mingxuan Sun;Li Yu
  • 通讯作者:
    Li Yu
Alkynyl carbon functionalized N-TiOsub2/sub: Ball milling synthesis and investigation of improved photocatalytic activity
炔基碳官能化 N-TiO₂:球磨合成及改进光催化活性的研究
  • DOI:
    10.1016/j.jallcom.2023.168826
  • 发表时间:
    2023-04-05
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Wangbing Sun;Mingxuan Sun;Xianglong Meng;Yongqiang Zheng;Ziyang Li;Xiangzhi Huang;Muhammad Humayun
  • 通讯作者:
    Muhammad Humayun

Mingxuan Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mingxuan Sun', 18)}}的其他基金

CAREER: Privacy-aware Predictive Modeling of Dynamic Human Events
职业:动态人类事件的隐私感知预测建模
  • 批准号:
    1943486
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

OH+HCl/DCl↔H2O/HOD+Cl态-态反应的全维微分截面研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
番茄抗病毒基因DCL2b受病毒诱导调控的分子机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
套索RNA通过拮抗DCL1复合物抑制植物miRNA产生的分子机制
  • 批准号:
    31671261
  • 批准年份:
    2016
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
拟南芥DCL4介导、不依赖DRB4的新抗病毒RNA沉默分子机制研究
  • 批准号:
    31570145
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
DCL在DNAmβ诱导的基因沉默和抗TYLCCNV病毒中的功能分析
  • 批准号:
    30771406
  • 批准年份:
    2007
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Education DCL: EAGER: Advancing Secure Coding Education: Empowering Students to Safely Utilize AI-powered Coding Assistant Tools
教育 DCL:EAGER:推进安全编码教育:使学生能够安全地利用人工智能驱动的编码辅助工具
  • 批准号:
    2335798
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Education DCL: EAGER: Generative AI-based Personalized Cybersecurity Tutor for Fourth Industrial Revolution
教育 DCL:EAGER:第四次工业革命的基于生成人工智能的个性化网络安全导师
  • 批准号:
    2335046
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Education DCL: EAGER: Developing Experiential Cybersecurity and Privacy Training for AI Practitioners
教育 DCL:EAGER:为人工智能从业者开发体验式网络安全和隐私培训
  • 批准号:
    2335700
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
  • 批准号:
    2125116
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
  • 批准号:
    2127754
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: AI-DCL: Addressing sociotechnical challenges of conversational agents and interventions in the context of elderly care
EAGER:AI-DCL:解决老年护理背景下对话代理和干预措施的社会技术挑战
  • 批准号:
    1927190
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: AI-DCL: Hybrid human algorithm predictions: balancing effort, accuracy, and perceived autonomy
EAGER:AI-DCL:混合人类算法预测:平衡努力、准确性和感知自主性
  • 批准号:
    1927245
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AI-DCL: Collaborative Research: EAGER: Understanding and Alleviating Potential Biases in Large Scale Employee Selection Systems: The Case of Automated Video Interviews
AI-DCL:协作研究:EAGER:理解和减轻大规模员工选拔系统中的潜在偏见:自动视频面试的案例
  • 批准号:
    1921111
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
  • 批准号:
    1927322
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
  • 批准号:
    1927422
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了