EarthCube Data Capabilities: Machine Learning Enhanced Cyberinfrastructure for Understanding and Predicting the Onset of Solar Eruptions
EarthCube 数据功能:机器学习增强的网络基础设施,用于理解和预测太阳喷发的发生
基本信息
- 批准号:1927578
- 负责人:
- 金额:$ 84.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Space weather is a term used to describe changing environmental conditions in the solar system caused by eruptions on the Sun's surface such as solar flares. Understanding and forecasting of solar eruptions is critically important for national security and for the economy since they are known to have adverse effects on critical technology infrastructure such as satellite and power distribution networks. Solar eruptions are caused by complex dynamics of sunspots which are often called solar active regions. The goal of this research is to build data infrastructure to characterize the properties of solar active regions from 1970 to now using advanced data from ground-based observatories and satellite missions. The database and associated cyberinfrastructure, jointly to be developed by physicists and computer scientists, will utilize advanced artificial intelligence and machine learning. By using this advanced database, a better understanding of the solar active regions and how they trigger solar eruptions will be achieved. The project has significant education and training components that will involve graduate students and junior researchers. The project will build advanced computer infrastructure to characterize solar active regions (ARs) and apply machine learning tools to predict two most significant forms of solar eruptions: the solar flares and coronal mass ejections (CMEs). The project will address two key science questions: (1) Which parameters and physical processes are most important for the onset of solar eruptions? (2) What is the accuracy of using these parameters to predict solar eruptions? The work will utilize and interface with the infrastructure developed under a previous EarthCube project. It will analyze digitized and digital high-resolution data from the Big Bear Solar Observatory (BBSO) from 1970 to now, current satellite mission data, as well as legacy data for a more comprehensive archive of flares and associated ARs. Dynamic non-potentiality properties of ARs will be derived using advanced imaging and machine learning tools. Deep learning techniques will be used to trace fibril/loop structures in the solar chromosphere and corona. Combining these with coronal field extrapolation will provide novel parameters to describe non-potentiality in ARs. Two new parameters will be derived that may be critically linked to flares and CMEs: flow motions and magnetic helicity injection in flare productive ARs. Based on flare/CME properties and important parameters derived from hosting ARs, deep learning techniques will be further adapted to predict the occurrence and energy range of flares and CMEs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
空间天气是一个术语,用于描述太阳系中由太阳表面爆发(如太阳耀斑)引起的环境条件变化。了解和预测太阳爆发对国家安全和经济至关重要,因为众所周知,太阳爆发会对卫星和配电网等关键技术基础设施产生不利影响。太阳爆发是由太阳黑子的复杂动力学引起的,这些黑子通常被称为太阳活动区。这项研究的目标是建立数据基础设施,利用地面观测站和卫星任务的先进数据来表征1970年至今太阳活动区的特性。该数据库和相关的网络基础设施将由物理学家和计算机科学家共同开发,将利用先进的人工智能和机器学习。 通过使用这一先进的数据库,将更好地了解太阳活动区及其如何引发太阳爆发。该项目具有重要的教育和培训内容,将涉及研究生和初级研究人员。该项目将建立先进的计算机基础设施来描述太阳活动区的特征,并应用机器学习工具来预测两种最重要的太阳喷发形式:太阳耀斑和日冕物质抛射。该项目将解决两个关键的科学问题:(1)哪些参数和物理过程对太阳爆发的开始最为重要?(2)使用这些参数来预测太阳爆发的准确性如何?这项工作将利用在以前的一个EarthCube项目下开发的基础设施并与之对接。它将分析从1970年至今来自大熊太阳天文台(BBSO)的数字化和数字化高分辨率数据,当前的卫星使命数据,以及遗留数据,以获得更全面的耀斑和相关AR档案。将使用先进的成像和机器学习工具来推导AR的动态非潜能特性。深度学习技术将用于追踪太阳色球层和日冕中的纤维/环结构。将这些与日冕场外推相结合,将提供新的参数来描述AR中的非潜力。两个新的参数将得出,可能是至关重要的耀斑和日冕物质抛射:流运动和磁螺旋注入耀斑生产AR。根据耀斑/CME的性质和从托管AR中获得的重要参数,深度学习技术将进一步适用于预测耀斑和CME的发生和能量范围。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An investigation of the causal relationship between sunspot groups and coronal mass ejections by determining source active regions
通过确定源活动区域研究太阳黑子群与日冕物质抛射之间的因果关系
- DOI:10.1093/mnras/stab1816
- 发表时间:2021
- 期刊:
- 影响因子:4.8
- 作者:Raheem, Abd-ur;Cavus, Huseyin;Coban, Gani Caglar;Kinaci, Ahmet Cumhur;Wang, Haimin;Wang, Jason T
- 通讯作者:Wang, Jason T
Machine-learning Approach to Identification of Coronal Holes in Solar Disk Images and Synoptic Maps
识别日盘图像和天气图中日冕洞的机器学习方法
- DOI:10.3847/1538-4357/abb94d
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Illarionov, Egor;Kosovichev, Alexander;Tlatov, Andrey
- 通讯作者:Tlatov, Andrey
Predicting CME arrival time through data integration and ensemble learning
- DOI:10.3389/fspas.2022.1013345
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Khalid A. Alobaid;Yasser Abduallah;J. T. Wang;Haimin Wang;Haodi Jiang;Yan Xu;V. Yurchyshyn;Hongyang Zhang;H. Cavus;J. Jing
- 通讯作者:Khalid A. Alobaid;Yasser Abduallah;J. T. Wang;Haimin Wang;Haodi Jiang;Yan Xu;V. Yurchyshyn;Hongyang Zhang;H. Cavus;J. Jing
Study of Global Photospheric and Chromospheric Flows Using Local Correlation Tracking and Machine Learning Methods I: Methodology and Uncertainty Estimates
- DOI:10.1007/s11207-023-02158-x
- 发表时间:2023-05
- 期刊:
- 影响因子:2.8
- 作者:Qin Li;Yan Xu;M. Verma;C. Denker;Junwei Zhao;Haimin Wang
- 通讯作者:Qin Li;Yan Xu;M. Verma;C. Denker;Junwei Zhao;Haimin Wang
Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network
- DOI:10.3847/1538-4357/ab8818
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Hao Liu;Yan Xu;Jiasheng Wang;J. Jing;Chang Liu;J. T. Wang;Haimin Wang
- 通讯作者:Hao Liu;Yan Xu;Jiasheng Wang;J. Jing;Chang Liu;J. T. Wang;Haimin Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haimin Wang其他文献
Effects of the phase content on dynamic damage evolution in Fe50Mn30Co10Cr10 high entropy alloy
相含量对Fe50Mn30Co10Cr10高熵合金动态损伤演化的影响
- DOI:
10.1016/j.jallcom.2020.156883 - 发表时间:
2021-01 - 期刊:
- 影响因子:6.2
- 作者:
Yang Yang;Shuangjun Yang;Haimin Wang - 通讯作者:
Haimin Wang
Efficient reprogramming of the heavy-chain CDR3 regions of a human antibody repertoire
人抗体库重链 CDR3 区的有效重编程
- DOI:
10.1101/2021.04.01.437943 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
T. Ou;Wenhui He;Brian D. Quinlan;Yan Guo;P. Karunadharma;Hajeung Park;Meredith E. Davis;Mai H. Tran;Yiming Yin;Xia Zhang;Haimin Wang;Guocai Zhong;M. Farzan - 通讯作者:
M. Farzan
RELATIONSHIP BETWEEN CME KINEMATICS AND FLARE STRENGTH
CME 运动学与耀斑强度之间的关系
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Y. Moon;G. Choe;Haimin Wang;Y. Park;C. Cheng - 通讯作者:
C. Cheng
Solar activity monitoring and forecasting capabilities at Big Bear Solar Observatory
大熊太阳观测站的太阳活动监测和预报能力
- DOI:
10.5194/angeo-20-1105-2002 - 发表时间:
2002 - 期刊:
- 影响因子:1.9
- 作者:
P. Gallagher;C. Denker;V. Yurchyshyn;T. Spirock;J. Qiu;Haimin Wang;P. Goode - 通讯作者:
P. Goode
Statistical Correlations between Parameters of Photospheric Magnetic Fields and Coronal Soft X-Ray Brightness
光球磁场参数与日冕软X射线亮度的统计相关性
- DOI:
10.1086/519304 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Changyi Tan;J. Jing;V. Abramenko;A. Pevtsov;Hui Song;Sung;Haimin Wang - 通讯作者:
Haimin Wang
Haimin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haimin Wang', 18)}}的其他基金
Collaborative Research: DKIST Critical Science: Study of Flare Producing Active Regions with Highest Resolution Observations and Data-based Magnetohydrodynamics (MHD) Modeling
合作研究:DKIST 关键科学:利用最高分辨率观测和基于数据的磁流体动力学 (MHD) 建模研究耀斑产生的活动区域
- 批准号:
2204384 - 财政年份:2022
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
Collaborative Research: SHINE: Investigation of Mini-filament Eruptions and Their Relationship with Small Scale Magnetic Flux Ropes in Solar Wind
合作研究:SHINE:研究太阳风中的微型细丝喷发及其与小规模磁通量绳的关系
- 批准号:
2229064 - 财政年份:2022
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic and Non-Force-Free Properties of Solar Active Regions and Subsequent Initiation of Flares
合作研究:太阳活动区域的动态和非无力特性以及随后耀斑的引发
- 批准号:
1954737 - 财政年份:2020
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
Collaborative Research: SHINE: Study of Long-Term Variability of Solar Chromospheric Activity in Multiple Solar Cycles
合作研究:SHINE:多个太阳周期中太阳色层活动的长期变化研究
- 批准号:
1620875 - 财政年份:2016
- 资助金额:
$ 84.12万 - 项目类别:
Continuing Grant
High Resolution Observations of Evolution of Magnetic Fields and Flows Associated with Solar Eruptions
与太阳喷发相关的磁场和气流演化的高分辨率观测
- 批准号:
1408703 - 财政年份:2014
- 资助金额:
$ 84.12万 - 项目类别:
Continuing Grant
Collaborative Research: SHINE: Laboratory, Observational, and Modeling Investigations of the Torus Instability and Associated Solar Corona Eruptive Phenomena
合作研究:SHINE:环面不稳定性和相关日冕喷发现象的实验室、观测和建模研究
- 批准号:
1348513 - 财政年份:2014
- 资助金额:
$ 84.12万 - 项目类别:
Continuing Grant
Exploring Large-Scale Current Sheets Associated with Coronal Mass Ejections
探索与日冕物质抛射相关的大规模电流片
- 批准号:
1153226 - 财政年份:2012
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
Operation and Application of High-Resolution Full-Disk Global Halpha Network
高分辨率全盘全球Halpha网络的运行与应用
- 批准号:
0839216 - 财政年份:2009
- 资助金额:
$ 84.12万 - 项目类别:
Continuing Grant
SHINE: Digitization of 27 Years of Big Bear Solar Observatory (BBSO) Films and Application in Statistical Study of Filaments and Flares
SHINE:大熊太阳天文台 (BBSO) 27 年胶片的数字化及其在灯丝和耀斑统计研究中的应用
- 批准号:
0849453 - 财政年份:2009
- 资助金额:
$ 84.12万 - 项目类别:
Continuing Grant
ATI: Adaptive Optics System for 1.6-m Solar Telescope in Big Bear
ATI:Big Bear 1.6 米太阳望远镜的自适应光学系统
- 批准号:
0604021 - 财政年份:2006
- 资助金额:
$ 84.12万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EarthCube Data Capabilities: Collaborative Proposal: Reducing Time-To-Science in the Earth Sciences: Annotations to foster convergence, inclusion, and credit
EarthCube 数据功能:协作提案:缩短地球科学的科学时间:促进融合、包容和信用的注释
- 批准号:
2246427 - 财政年份:2022
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Data Capabilities: Volcanology hub for Interdisciplinary Collaboration, Tools and Resources (VICTOR)
合作研究:EarthCube 数据能力:跨学科合作、工具和资源的火山学中心 (VICTOR)
- 批准号:
2125974 - 财政年份:2021
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
EarthCube Capabilities: CloudDrift: a platform for accelerating research with Lagrangian climate data
EarthCube 功能:CloudDrift:利用拉格朗日气候数据加速研究的平台
- 批准号:
2126413 - 财政年份:2021
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
EarthCube Capabilities: Reducing Time-to-science for Terrestrial Sensor Networks by Integrating Field Notes, Management, and QA/QC into Data Curation
EarthCube 功能:通过将现场记录、管理和 QA/QC 集成到数据管理中,缩短地面传感器网络的科学时间
- 批准号:
2126386 - 财政年份:2021
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Capabilities: Repurposing FAIR-Compliant Earth Science Data Repositories
协作研究:EarthCube 功能:重新利用符合 FAIR 的地球科学数据存储库
- 批准号:
2126427 - 财政年份:2021
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Data Capabilities: Volcanology hub for Interdisciplinary Collaboration, Tools and Resources (VICTOR)
合作研究:EarthCube 数据能力:跨学科合作、工具和资源的火山学中心 (VICTOR)
- 批准号:
2126268 - 财政年份:2021
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Data Capabilities: Volcanology hub for Interdisciplinary Collaboration, Tools and Resources (VICTOR)
合作研究:EarthCube 数据能力:跨学科合作、工具和资源的火山学中心 (VICTOR)
- 批准号:
2126435 - 财政年份:2021
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Capabilities: Raijin: Community Geoscience Analysis Tools for Unstructured Mesh Data
协作研究:EarthCube 功能:Raijin:非结构化网格数据的社区地球科学分析工具
- 批准号:
2126459 - 财政年份:2021
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Capabilities: ICESpark: An Open-Source Big Data Platform for Science Discoveries in the New Arctic and Beyond
协作研究:EarthCube 功能:ICESpark:新北极及其他地区科学发现的开源大数据平台
- 批准号:
2126474 - 财政年份:2021
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Capabilities: Repurposing FAIR-Compliant Earth Science Data Repositories
协作研究:EarthCube 功能:重新利用符合 FAIR 的地球科学数据存储库
- 批准号:
2126298 - 财政年份:2021
- 资助金额:
$ 84.12万 - 项目类别:
Standard Grant